File size: 11,940 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import itertools
import time
from collections import defaultdict

import numpy as np
import torch.multiprocessing as mp
from mmengine.logging import MMLogger
from pycocotools.cocoeval import COCOeval
from tqdm import tqdm


class COCOevalMP(COCOeval):

    def _prepare(self):
        '''
        Prepare ._gts and ._dts for evaluation based on params
        :return: None
        '''

        def _toMask(anns, coco):
            # modify ann['segmentation'] by reference
            for ann in anns:
                rle = coco.annToRLE(ann)
                ann['segmentation'] = rle

        p = self.params
        if p.useCats:
            gts = []
            dts = []
            img_ids = set(p.imgIds)
            cat_ids = set(p.catIds)
            for gt in self.cocoGt.dataset['annotations']:
                if (gt['category_id'] in cat_ids) and (gt['image_id']
                                                       in img_ids):
                    gts.append(gt)
            for dt in self.cocoDt.dataset['annotations']:
                if (dt['category_id'] in cat_ids) and (dt['image_id']
                                                       in img_ids):
                    dts.append(dt)
            # gts=self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds)) # noqa
            # dts=self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds)) # noqa
            # gts=self.cocoGt.dataset['annotations']
            # dts=self.cocoDt.dataset['annotations']
        else:
            gts = self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds))
            dts = self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds))

        # convert ground truth to mask if iouType == 'segm'
        if p.iouType == 'segm':
            _toMask(gts, self.cocoGt)
            _toMask(dts, self.cocoDt)
        # set ignore flag
        for gt in gts:
            gt['ignore'] = gt['ignore'] if 'ignore' in gt else 0
            gt['ignore'] = 'iscrowd' in gt and gt['iscrowd']
            if p.iouType == 'keypoints':
                gt['ignore'] = (gt['num_keypoints'] == 0) or gt['ignore']
        self._gts = defaultdict(list)  # gt for evaluation
        self._dts = defaultdict(list)  # dt for evaluation
        for gt in gts:
            self._gts[gt['image_id'], gt['category_id']].append(gt)
        for dt in dts:
            self._dts[dt['image_id'], dt['category_id']].append(dt)
        self.evalImgs = defaultdict(
            list)  # per-image per-category evaluation results
        self.eval = {}  # accumulated evaluation results

    def evaluate(self):
        """Run per image evaluation on given images and store results (a list
        of dict) in self.evalImgs.

        :return: None
        """
        tic = time.time()
        print('Running per image evaluation...')
        p = self.params
        # add backward compatibility if useSegm is specified in params
        if p.useSegm is not None:
            p.iouType = 'segm' if p.useSegm == 1 else 'bbox'
            print('useSegm (deprecated) is not None. Running {} evaluation'.
                  format(p.iouType))
        print('Evaluate annotation type *{}*'.format(p.iouType))
        p.imgIds = list(np.unique(p.imgIds))
        if p.useCats:
            p.catIds = list(np.unique(p.catIds))
        p.maxDets = sorted(p.maxDets)
        self.params = p

        # loop through images, area range, max detection number
        catIds = p.catIds if p.useCats else [-1]

        nproc = 8
        split_size = len(catIds) // nproc
        mp_params = []
        for i in range(nproc):
            begin = i * split_size
            end = (i + 1) * split_size
            if i == nproc - 1:
                end = len(catIds)
            mp_params.append((catIds[begin:end], ))

        MMLogger.get_current_instance().info(
            'start multi processing evaluation ...')
        with mp.Pool(nproc) as pool:
            self.evalImgs = pool.starmap(self._evaluateImg, mp_params)

        self.evalImgs = list(itertools.chain(*self.evalImgs))

        self._paramsEval = copy.deepcopy(self.params)
        toc = time.time()
        print('DONE (t={:0.2f}s).'.format(toc - tic))

    def _evaluateImg(self, catids_chunk):
        self._prepare()
        p = self.params
        maxDet = max(p.maxDets)
        all_params = []
        for catId in catids_chunk:
            for areaRng in p.areaRng:
                for imgId in p.imgIds:
                    all_params.append((catId, areaRng, imgId))
        evalImgs = [
            self.evaluateImg(imgId, catId, areaRng, maxDet)
            for catId, areaRng, imgId in tqdm(all_params)
        ]
        return evalImgs

    def evaluateImg(self, imgId, catId, aRng, maxDet):
        p = self.params
        if p.useCats:
            gt = self._gts[imgId, catId]
            dt = self._dts[imgId, catId]
        else:
            gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]]
            dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]]
        if len(gt) == 0 and len(dt) == 0:
            return None

        for g in gt:
            if g['ignore'] or (g['area'] < aRng[0] or g['area'] > aRng[1]):
                g['_ignore'] = 1
            else:
                g['_ignore'] = 0

        # sort dt highest score first, sort gt ignore last
        gtind = np.argsort([g['_ignore'] for g in gt], kind='mergesort')
        gt = [gt[i] for i in gtind]
        dtind = np.argsort([-d['score'] for d in dt], kind='mergesort')
        dt = [dt[i] for i in dtind[0:maxDet]]
        iscrowd = [int(o['iscrowd']) for o in gt]
        # load computed ious
        # ious = self.ious[imgId, catId][:, gtind] if len(self.ious[imgId, catId]) > 0 else self.ious[imgId, catId] # noqa
        ious = self.computeIoU(imgId, catId)
        ious = ious[:, gtind] if len(ious) > 0 else ious

        T = len(p.iouThrs)
        G = len(gt)
        D = len(dt)
        gtm = np.zeros((T, G))
        dtm = np.zeros((T, D))
        gtIg = np.array([g['_ignore'] for g in gt])
        dtIg = np.zeros((T, D))
        if not len(ious) == 0:
            for tind, t in enumerate(p.iouThrs):
                for dind, d in enumerate(dt):
                    # information about best match so far (m=-1 -> unmatched)
                    iou = min([t, 1 - 1e-10])
                    m = -1
                    for gind, g in enumerate(gt):
                        # if this gt already matched, and not a crowd, continue
                        if gtm[tind, gind] > 0 and not iscrowd[gind]:
                            continue
                        # if dt matched to reg gt, and on ignore gt, stop
                        if m > -1 and gtIg[m] == 0 and gtIg[gind] == 1:
                            break
                        # continue to next gt unless better match made
                        if ious[dind, gind] < iou:
                            continue
                        # if match successful and best so far,
                        # store appropriately
                        iou = ious[dind, gind]
                        m = gind
                    # if match made store id of match for both dt and gt
                    if m == -1:
                        continue
                    dtIg[tind, dind] = gtIg[m]
                    dtm[tind, dind] = gt[m]['id']
                    gtm[tind, m] = d['id']
        # set unmatched detections outside of area range to ignore
        a = np.array([d['area'] < aRng[0] or d['area'] > aRng[1]
                      for d in dt]).reshape((1, len(dt)))
        dtIg = np.logical_or(dtIg, np.logical_and(dtm == 0, np.repeat(a, T,
                                                                      0)))
        # store results for given image and category

        return {
            'image_id': imgId,
            'category_id': catId,
            'aRng': aRng,
            'maxDet': maxDet,
            'dtIds': [d['id'] for d in dt],
            'gtIds': [g['id'] for g in gt],
            'dtMatches': dtm,
            'gtMatches': gtm,
            'dtScores': [d['score'] for d in dt],
            'gtIgnore': gtIg,
            'dtIgnore': dtIg,
        }

    def summarize(self):
        """Compute and display summary metrics for evaluation results.

        Note this function can *only* be applied on the default parameter
        setting
        """

        def _summarize(ap=1, iouThr=None, areaRng='all', maxDets=100):
            p = self.params
            iStr = ' {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}'  # noqa
            titleStr = 'Average Precision' if ap == 1 else 'Average Recall'
            typeStr = '(AP)' if ap == 1 else '(AR)'
            iouStr = '{:0.2f}:{:0.2f}'.format(p.iouThrs[0], p.iouThrs[-1]) \
                if iouThr is None else '{:0.2f}'.format(iouThr)

            aind = [
                i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng
            ]
            mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
            if ap == 1:
                # dimension of precision: [TxRxKxAxM]
                s = self.eval['precision']
                # IoU
                if iouThr is not None:
                    t = np.where(iouThr == p.iouThrs)[0]
                    s = s[t]
                s = s[:, :, :, aind, mind]
            else:
                # dimension of recall: [TxKxAxM]
                s = self.eval['recall']
                if iouThr is not None:
                    t = np.where(iouThr == p.iouThrs)[0]
                    s = s[t]
                s = s[:, :, aind, mind]
            if len(s[s > -1]) == 0:
                mean_s = -1
            else:
                mean_s = np.mean(s[s > -1])
            print(
                iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets,
                            mean_s))
            return mean_s

        def _summarizeDets():
            stats = []
            stats.append(_summarize(1, maxDets=self.params.maxDets[-1]))
            stats.append(
                _summarize(1, iouThr=.5, maxDets=self.params.maxDets[-1]))
            stats.append(
                _summarize(1, iouThr=.75, maxDets=self.params.maxDets[-1]))
            for area_rng in ('small', 'medium', 'large'):
                stats.append(
                    _summarize(
                        1, areaRng=area_rng, maxDets=self.params.maxDets[-1]))
            for max_det in self.params.maxDets:
                stats.append(_summarize(0, maxDets=max_det))
            for area_rng in ('small', 'medium', 'large'):
                stats.append(
                    _summarize(
                        0, areaRng=area_rng, maxDets=self.params.maxDets[-1]))
            stats = np.array(stats)
            return stats

        def _summarizeKps():
            stats = np.zeros((10, ))
            stats[0] = _summarize(1, maxDets=20)
            stats[1] = _summarize(1, maxDets=20, iouThr=.5)
            stats[2] = _summarize(1, maxDets=20, iouThr=.75)
            stats[3] = _summarize(1, maxDets=20, areaRng='medium')
            stats[4] = _summarize(1, maxDets=20, areaRng='large')
            stats[5] = _summarize(0, maxDets=20)
            stats[6] = _summarize(0, maxDets=20, iouThr=.5)
            stats[7] = _summarize(0, maxDets=20, iouThr=.75)
            stats[8] = _summarize(0, maxDets=20, areaRng='medium')
            stats[9] = _summarize(0, maxDets=20, areaRng='large')
            return stats

        if not self.eval:
            raise Exception('Please run accumulate() first')
        iouType = self.params.iouType
        if iouType == 'segm' or iouType == 'bbox':
            summarize = _summarizeDets
        elif iouType == 'keypoints':
            summarize = _summarizeKps
        self.stats = summarize()