Wisdom-Query-Assistant / vectorize_documents.py
Krish30's picture
Upload 3 files
1b2e553 verified
raw
history blame
4.42 kB
# from langchain_text_splitters import CharacterTextSplitter
# from langchain_huggingface import HuggingFaceEmbeddings
# from langchain_chroma import Chroma
# from langchain.docstore.document import Document
# import pandas as pd
# import os
# import glob
# # Define a function to perform vectorization for multiple CSV files
# def vectorize_documents():
# embeddings = HuggingFaceEmbeddings()
# # Directory containing multiple CSV files
# csv_directory = "Data" # Replace with your folder name
# csv_files = glob.glob(os.path.join(csv_directory, "*.csv")) # Find all CSV files in the folder
# documents = []
# # Load and concatenate all CSV files
# for file_path in csv_files:
# df = pd.read_csv(file_path)
# for _, row in df.iterrows():
# # Combine all columns in the row into a single string
# row_content = " ".join(row.astype(str))
# documents.append(Document(page_content=row_content))
# # Splitting the text and creating chunks of these documents
# text_splitter = CharacterTextSplitter(
# chunk_size=2000,
# chunk_overlap=500
# )
# text_chunks = text_splitter.split_documents(documents)
# # Process text chunks in batches
# batch_size = 5000 # Chroma's batch size limit is 5461, set a slightly smaller size for safety
# for i in range(0, len(text_chunks), batch_size):
# batch = text_chunks[i:i + batch_size]
# # Store the batch in Chroma vector DB
# vectordb = Chroma.from_documents(
# documents=batch,
# embedding=embeddings,
# persist_directory="vector_db_dir"
# )
# print("Documents Vectorized and saved in VectorDB")
# # Expose embeddings if needed
# embeddings = HuggingFaceEmbeddings()
# # Main guard to prevent execution on import
# if __name__ == "__main__":
# vectorize_documents()
from langchain_text_splitters import CharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from langchain.docstore.document import Document
import pandas as pd
import os
import glob
from PyPDF2 import PdfReader # Ensure PyPDF2 is installed
# Define a function to process CSV files
def process_csv_files(csv_files):
documents = []
for file_path in csv_files:
df = pd.read_csv(file_path)
for _, row in df.iterrows():
row_content = " ".join(row.astype(str))
documents.append(Document(page_content=row_content))
return documents
# Define a function to process PDF files
def process_pdf_files(pdf_files):
documents = []
for file_path in pdf_files:
reader = PdfReader(file_path)
for page in reader.pages:
text = page.extract_text()
if text: # Only add non-empty text
documents.append(Document(page_content=text))
return documents
# Define a function to perform vectorization for CSV and PDF files
def vectorize_documents():
embeddings = HuggingFaceEmbeddings()
# Directory containing files
data_directory = "Data" # Replace with your folder name
csv_files = glob.glob(os.path.join(data_directory, "*.csv"))
pdf_files = glob.glob(os.path.join(data_directory, "*.pdf"))
# Process CSV and PDF files
documents = process_csv_files(csv_files) + process_pdf_files(pdf_files)
# Splitting the text and creating chunks of these documents
text_splitter = CharacterTextSplitter(
chunk_size=2000,
chunk_overlap=500
)
text_chunks = text_splitter.split_documents(documents)
# Process text chunks in batches
batch_size = 5000 # Chroma's batch size limit is 5461, set a slightly smaller size for safety
for i in range(0, len(text_chunks), batch_size):
batch = text_chunks[i:i + batch_size]
# Store the batch in Chroma vector DB
vectordb = Chroma.from_documents(
documents=batch,
embedding=embeddings,
persist_directory="vector_db_dir"
)
print("Documents Vectorized and saved in VectorDB")
# Expose embeddings if needed
embeddings = HuggingFaceEmbeddings()
# Main guard to prevent execution on import
if __name__ == "__main__":
vectorize_documents()