Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- config.json +1 -0
- requirements.txt +18 -0
- vectorize_documents.py +129 -0
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"GROQ_API_KEY": "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"}
|
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.38.0
|
2 |
+
langchain-community==0.2.16
|
3 |
+
langchain-text-splitters==0.2.4
|
4 |
+
langchain-chroma==0.1.3
|
5 |
+
langchain-huggingface==0.0.3
|
6 |
+
langchain-groq==0.1.9
|
7 |
+
unstructured==0.15.0
|
8 |
+
nltk==3.8.1
|
9 |
+
docx2txt
|
10 |
+
SpeechRecognition
|
11 |
+
deep-translator
|
12 |
+
sounddevice # Replacement for PyAudio
|
13 |
+
scipy # Required for WAV file handling with SoundDevice
|
14 |
+
vosk
|
15 |
+
google-generativeai
|
16 |
+
PyPDF2
|
17 |
+
streamlit_chat
|
18 |
+
googlesearch-python
|
vectorize_documents.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from langchain_text_splitters import CharacterTextSplitter
|
2 |
+
# from langchain_huggingface import HuggingFaceEmbeddings
|
3 |
+
# from langchain_chroma import Chroma
|
4 |
+
# from langchain.docstore.document import Document
|
5 |
+
# import pandas as pd
|
6 |
+
# import os
|
7 |
+
# import glob
|
8 |
+
|
9 |
+
# # Define a function to perform vectorization for multiple CSV files
|
10 |
+
# def vectorize_documents():
|
11 |
+
# embeddings = HuggingFaceEmbeddings()
|
12 |
+
|
13 |
+
# # Directory containing multiple CSV files
|
14 |
+
# csv_directory = "Data" # Replace with your folder name
|
15 |
+
# csv_files = glob.glob(os.path.join(csv_directory, "*.csv")) # Find all CSV files in the folder
|
16 |
+
|
17 |
+
# documents = []
|
18 |
+
|
19 |
+
# # Load and concatenate all CSV files
|
20 |
+
# for file_path in csv_files:
|
21 |
+
# df = pd.read_csv(file_path)
|
22 |
+
# for _, row in df.iterrows():
|
23 |
+
# # Combine all columns in the row into a single string
|
24 |
+
# row_content = " ".join(row.astype(str))
|
25 |
+
# documents.append(Document(page_content=row_content))
|
26 |
+
|
27 |
+
# # Splitting the text and creating chunks of these documents
|
28 |
+
# text_splitter = CharacterTextSplitter(
|
29 |
+
# chunk_size=2000,
|
30 |
+
# chunk_overlap=500
|
31 |
+
# )
|
32 |
+
|
33 |
+
# text_chunks = text_splitter.split_documents(documents)
|
34 |
+
|
35 |
+
# # Process text chunks in batches
|
36 |
+
# batch_size = 5000 # Chroma's batch size limit is 5461, set a slightly smaller size for safety
|
37 |
+
# for i in range(0, len(text_chunks), batch_size):
|
38 |
+
# batch = text_chunks[i:i + batch_size]
|
39 |
+
|
40 |
+
# # Store the batch in Chroma vector DB
|
41 |
+
# vectordb = Chroma.from_documents(
|
42 |
+
# documents=batch,
|
43 |
+
# embedding=embeddings,
|
44 |
+
# persist_directory="vector_db_dir"
|
45 |
+
# )
|
46 |
+
|
47 |
+
# print("Documents Vectorized and saved in VectorDB")
|
48 |
+
|
49 |
+
# # Expose embeddings if needed
|
50 |
+
# embeddings = HuggingFaceEmbeddings()
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
# # Main guard to prevent execution on import
|
55 |
+
# if __name__ == "__main__":
|
56 |
+
# vectorize_documents()
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
from langchain_text_splitters import CharacterTextSplitter
|
61 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
62 |
+
from langchain_chroma import Chroma
|
63 |
+
from langchain.docstore.document import Document
|
64 |
+
import pandas as pd
|
65 |
+
import os
|
66 |
+
import glob
|
67 |
+
from PyPDF2 import PdfReader # Ensure PyPDF2 is installed
|
68 |
+
|
69 |
+
# Define a function to process CSV files
|
70 |
+
def process_csv_files(csv_files):
|
71 |
+
documents = []
|
72 |
+
for file_path in csv_files:
|
73 |
+
df = pd.read_csv(file_path)
|
74 |
+
for _, row in df.iterrows():
|
75 |
+
row_content = " ".join(row.astype(str))
|
76 |
+
documents.append(Document(page_content=row_content))
|
77 |
+
return documents
|
78 |
+
|
79 |
+
# Define a function to process PDF files
|
80 |
+
def process_pdf_files(pdf_files):
|
81 |
+
documents = []
|
82 |
+
for file_path in pdf_files:
|
83 |
+
reader = PdfReader(file_path)
|
84 |
+
for page in reader.pages:
|
85 |
+
text = page.extract_text()
|
86 |
+
if text: # Only add non-empty text
|
87 |
+
documents.append(Document(page_content=text))
|
88 |
+
return documents
|
89 |
+
|
90 |
+
# Define a function to perform vectorization for CSV and PDF files
|
91 |
+
def vectorize_documents():
|
92 |
+
embeddings = HuggingFaceEmbeddings()
|
93 |
+
|
94 |
+
# Directory containing files
|
95 |
+
data_directory = "Data" # Replace with your folder name
|
96 |
+
csv_files = glob.glob(os.path.join(data_directory, "*.csv"))
|
97 |
+
pdf_files = glob.glob(os.path.join(data_directory, "*.pdf"))
|
98 |
+
|
99 |
+
# Process CSV and PDF files
|
100 |
+
documents = process_csv_files(csv_files) + process_pdf_files(pdf_files)
|
101 |
+
|
102 |
+
# Splitting the text and creating chunks of these documents
|
103 |
+
text_splitter = CharacterTextSplitter(
|
104 |
+
chunk_size=2000,
|
105 |
+
chunk_overlap=500
|
106 |
+
)
|
107 |
+
|
108 |
+
text_chunks = text_splitter.split_documents(documents)
|
109 |
+
|
110 |
+
# Process text chunks in batches
|
111 |
+
batch_size = 5000 # Chroma's batch size limit is 5461, set a slightly smaller size for safety
|
112 |
+
for i in range(0, len(text_chunks), batch_size):
|
113 |
+
batch = text_chunks[i:i + batch_size]
|
114 |
+
|
115 |
+
# Store the batch in Chroma vector DB
|
116 |
+
vectordb = Chroma.from_documents(
|
117 |
+
documents=batch,
|
118 |
+
embedding=embeddings,
|
119 |
+
persist_directory="vector_db_dir"
|
120 |
+
)
|
121 |
+
|
122 |
+
print("Documents Vectorized and saved in VectorDB")
|
123 |
+
|
124 |
+
# Expose embeddings if needed
|
125 |
+
embeddings = HuggingFaceEmbeddings()
|
126 |
+
|
127 |
+
# Main guard to prevent execution on import
|
128 |
+
if __name__ == "__main__":
|
129 |
+
vectorize_documents()
|