Spaces:
Sleeping
Sleeping
import time | |
import os | |
import json | |
import random | |
import streamlit as st | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain_chroma import Chroma | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from vectorize_documents import embeddings | |
from deep_translator import GoogleTranslator | |
from googlesearch import search | |
# Set up working directory and API configuration | |
working_dir = os.path.dirname(os.path.abspath(__file__)) | |
config_data = json.load(open(f"{working_dir}/config.json")) | |
os.environ["GROQ_API_KEY"] = config_data["GROQ_API_KEY"] | |
def setup_vectorstore(): | |
persist_directory = f"{working_dir}/vector_db_dir" | |
vectorstore = Chroma( | |
persist_directory=persist_directory, | |
embedding_function=embeddings | |
) | |
return vectorstore | |
def chat_chain(vectorstore): | |
from langchain_groq import ChatGroq | |
llm = ChatGroq( | |
model="llama-3.1-70b-versatile", | |
temperature=0 | |
) | |
retriever = vectorstore.as_retriever() | |
memory = ConversationBufferMemory( | |
llm=llm, | |
output_key="answer", | |
memory_key="chat_history", | |
return_messages=True | |
) | |
chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=retriever, | |
chain_type="stuff", | |
memory=memory, | |
verbose=True, | |
return_source_documents=True | |
) | |
return chain | |
def fetch_daily_quote(): | |
query = "Bhagavad Gita inspirational quotes" | |
results = list(search(query, num_results=5)) # Convert generator to list | |
if results: | |
return random.choice(results) | |
return "Explore the Bhagavad Gita and Yoga Sutras for timeless wisdom!" | |
# Streamlit UI | |
st.set_page_config( | |
page_title="Bhagavad Gita & Yoga Sutras Assistant", | |
page_icon="ποΈ", | |
layout="wide" | |
) | |
st.markdown( | |
""" | |
<div style="text-align: center;"> | |
<h1 style="color: #4CAF50;">Wisdom Query Assistant</h1> | |
<p style="font-size: 18px;">Explore timeless wisdom with the guidance of a knowledgeable assistant.</p> | |
</div> | |
""", | |
unsafe_allow_html=True | |
) | |
# User name functionality | |
if "user_name" not in st.session_state: | |
st.session_state.user_name = "" | |
if "chat_started" not in st.session_state: | |
st.session_state.chat_started = False | |
if not st.session_state.chat_started: | |
st.markdown("<h3 style='text-align: center;'>Welcome! Before we begin, please enter your name:</h3>", unsafe_allow_html=True) | |
user_name = st.text_input("Enter your name:", placeholder="Your Name", key="name_input") | |
start_button = st.button("Start Chat") | |
if start_button and user_name.strip(): | |
st.session_state.user_name = user_name.strip() | |
st.session_state.chat_started = True | |
st.success(f"Hello {st.session_state.user_name}! How can I assist you today?") | |
# Display the daily quote | |
quote = fetch_daily_quote() | |
st.markdown( | |
f""" | |
<div style="text-align: center; background-color: #f0f8ff; padding: 10px; border-radius: 5px; margin-bottom: 20px;"> | |
<h4>π Daily Wisdom: <a href="{quote}" target="_blank">{quote}</a></h4> | |
</div> | |
""", | |
unsafe_allow_html=True | |
) | |
if st.session_state.chat_started: | |
# Set up vectorstore and chat chain | |
vectorstore = setup_vectorstore() | |
chain = chat_chain(vectorstore) | |
# Select language | |
selected_language = st.selectbox("Select your preferred language:", options=[ | |
"English", "Hindi", "Bengali", "Telugu", "Marathi", "Tamil", "Urdu", "Gujarati", "Malayalam", "Kannada", | |
"Punjabi", "Odia", "Maithili", "Sanskrit", "Santali", "Kashmiri", "Nepali", "Dogri", "Manipuri", "Bodo", | |
"Sindhi", "Assamese", "Konkani", "Awadhi", "Rajasthani", "Haryanvi", "Bihari", "Chhattisgarhi", "Magahi" | |
], index=0) | |
# Display chat history | |
st.markdown("### π¬ Chat History") | |
if "chat_history" in st.session_state: | |
for chat in st.session_state.chat_history: | |
st.markdown(f"**{st.session_state.user_name}:** {chat['question']}") | |
st.markdown(f"**Assistant:** {chat['answer']}") | |
st.markdown("---") | |
# Input box for new query | |
st.markdown(f"### Ask a new question, {st.session_state.user_name}:") | |
with st.form("query_form", clear_on_submit=True): | |
user_query = st.text_input("Your question:", key="query_input", placeholder="Type your query here...") | |
submitted = st.form_submit_button("Submit") | |
if submitted and user_query.strip(): | |
start_time = time.time() | |
response = chain({"question": user_query.strip()}) | |
end_time = time.time() | |
answer = response.get("answer", "No answer found.") | |
source_documents = response.get("source_documents", []) | |
execution_time = round(end_time - start_time, 2) | |
# Translate response if needed | |
if selected_language != "English": | |
translator = GoogleTranslator(source="en", target=selected_language.lower()) | |
translated_answer = translator.translate(answer) | |
else: | |
translated_answer = answer | |
# Save chat history | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = [] | |
st.session_state.chat_history.append({ | |
"question": user_query.strip(), | |
"answer": translated_answer | |
}) | |
# Display source documents if available | |
if source_documents: | |
with st.expander("π Source Documents"): | |
for i, doc in enumerate(source_documents): | |
st.write(f"**Document {i + 1}:** {doc.page_content}") | |
st.write(f"**π Enlightened Response:** {translated_answer}") | |
st.write(f"_Response time: {execution_time} seconds_") | |
# Sharing options | |
st.markdown( | |
""" | |
<div style="text-align: center;"> | |
<a href="https://wa.me/?text=Explore%20the%20Bhagavad%20Gita%20%26%20Yoga%20Sutras%20Assistant!%20Check%20it%20out%20here:%20https://krish30-wisdom-query-assistant.hf.space" target="_blank"> | |
<img src="https://img.icons8.com/color/48/whatsapp.png" alt="WhatsApp" style="margin-right: 10px;"> | |
</a> | |
<a href="https://www.linkedin.com/shareArticle?mini=true&url=https://krish30-wisdom-query-assistant.hf.space&title=Explore%20Wisdom%20with%20Our%20Assistant" target="_blank"> | |
<img src="https://img.icons8.com/color/48/linkedin.png" alt="LinkedIn"> | |
</a> | |
</div> | |
""", | |
unsafe_allow_html=True | |
) | |
# import time | |
# import os | |
# import json | |
# import random | |
# import streamlit as st | |
# from langchain_huggingface import HuggingFaceEmbeddings | |
# from langchain_chroma import Chroma | |
# from langchain.memory import ConversationBufferMemory | |
# from langchain.chains import ConversationalRetrievalChain | |
# from vectorize_documents import embeddings | |
# from deep_translator import GoogleTranslator # For multilingual support | |
# # Set up working directory and API configuration | |
# working_dir = os.path.dirname(os.path.abspath(__file__)) | |
# config_data = json.load(open(f"{working_dir}/config.json")) | |
# os.environ["GROQ_API_KEY"] = config_data["GROQ_API_KEY"] | |
# def setup_vectorstore(): | |
# persist_directory = f"{working_dir}/vector_db_dir" | |
# vectorstore = Chroma( | |
# persist_directory=persist_directory, | |
# embedding_function=embeddings | |
# ) | |
# return vectorstore | |
# def chat_chain(vectorstore): | |
# from langchain_groq import ChatGroq # Import the LLM class | |
# llm = ChatGroq( | |
# model="llama-3.1-70b-versatile", # Replace with your LLM of choice | |
# temperature=0 # Set low temperature to reduce hallucinations | |
# ) | |
# retriever = vectorstore.as_retriever() # Retrieve relevant chunks | |
# memory = ConversationBufferMemory( | |
# llm=llm, | |
# output_key="answer", | |
# memory_key="chat_history", | |
# return_messages=True | |
# ) | |
# # Build the conversational retrieval chain | |
# chain = ConversationalRetrievalChain.from_llm( | |
# llm=llm, | |
# retriever=retriever, | |
# chain_type="stuff", # Define how documents are combined | |
# memory=memory, | |
# verbose=True, | |
# return_source_documents=True | |
# ) | |
# return chain | |
# # Streamlit UI | |
# st.set_page_config( | |
# page_title="Bhagavad Gita & Yoga Sutras Assistant", | |
# page_icon="ποΈ", # Custom meaningful favicon | |
# layout="wide" | |
# ) | |
# # Title and description with enhanced styling | |
# st.markdown( | |
# """ | |
# <div style="text-align: center;"> | |
# <h1 style="color: #4CAF50;">Wisdom Query Assistant</h1> | |
# <p style="font-size: 18px;">Explore timeless wisdom with the guidance of a knowledgeable assistant.</p> | |
# </div> | |
# """, | |
# unsafe_allow_html=True | |
# ) | |
# # Daily Wisdom Quote | |
# daily_quotes = [ | |
# "You have the right to work, but never to the fruit of work. β Bhagavad Gita", | |
# "Yoga is the journey of the self, through the self, to the self. β Bhagavad Gita", | |
# "When meditation is mastered, the mind is unwavering like the flame of a lamp in a windless place. β Bhagavad Gita", | |
# "Do not dwell in the past, do not dream of the future, concentrate the mind on the present moment. β Buddha", | |
# ] | |
# st.markdown( | |
# f""" | |
# <div style="text-align: center; background-color: #f0f8ff; padding: 10px; border-radius: 5px; margin-bottom: 20px;"> | |
# <h4>π Daily Wisdom: {random.choice(daily_quotes)}</h4> | |
# </div> | |
# """, | |
# unsafe_allow_html=True | |
# ) | |
# # Theme Toggle | |
# theme = st.radio("Choose a Theme:", options=["Light", "Dark"], index=0, horizontal=True) | |
# if theme == "Dark": | |
# st.markdown( | |
# """ | |
# <style> | |
# body { background-color: #121212; color: white; } | |
# </style> | |
# """, | |
# unsafe_allow_html=True | |
# ) | |
# vectorstore = setup_vectorstore() | |
# chain = chat_chain(vectorstore) | |
# # Initialize session state | |
# if "user_name" not in st.session_state: | |
# st.session_state.user_name = "" | |
# if "chat_started" not in st.session_state: | |
# st.session_state.chat_started = False | |
# # Language options | |
# languages = [ | |
# "English", "Hindi", "Bengali", "Telugu", "Marathi", "Tamil", "Urdu", "Gujarati", "Malayalam", "Kannada", | |
# "Punjabi", "Odia", "Maithili", "Sanskrit", "Santali", "Kashmiri", "Nepali", "Dogri", "Manipuri", "Bodo", | |
# "Sindhi", "Assamese", "Konkani", "Awadhi", "Rajasthani", "Haryanvi", "Bihari", "Chhattisgarhi", "Magahi" | |
# ] | |
# # Input for user name | |
# if not st.session_state.chat_started: | |
# st.markdown("<h3 style='text-align: center;'>Welcome! Before we begin, please enter your name:</h3>", unsafe_allow_html=True) | |
# user_name = st.text_input("Enter your name:", placeholder="Your Name", key="name_input") | |
# start_button = st.button("Start Chat") | |
# if start_button and user_name.strip(): | |
# st.session_state.user_name = user_name.strip() | |
# st.session_state.chat_started = True | |
# st.success(f"Hello {st.session_state.user_name}! How can I assist you today?") | |
# # Chat functionality | |
# if st.session_state.chat_started: | |
# st.markdown(f"<h3 style='text-align: center;'>Hello {st.session_state.user_name}! Ask me anything:</h3>", unsafe_allow_html=True) | |
# # Language selection dropdown | |
# selected_language = st.selectbox("Select your preferred language:", options=languages, index=0) | |
# # User input and buttons | |
# user_query = st.text_input("π¬ Type your question:", placeholder="Type your query here...", key="query_box") | |
# submit_button = st.button("Submit") | |
# if submit_button and user_query.strip(): | |
# # Generate response | |
# start_time = time.time() | |
# response = chain({"question": user_query.strip()}) | |
# end_time = time.time() | |
# answer = response.get("answer", "No answer found.") | |
# source_documents = response.get("source_documents", []) | |
# execution_time = round(end_time - start_time, 2) | |
# # Translate response | |
# if selected_language != "English": | |
# translator = GoogleTranslator(source="en", target=selected_language.lower()) | |
# translated_answer = translator.translate(answer) | |
# else: | |
# translated_answer = answer | |
# # Display answer | |
# st.markdown("---") | |
# st.markdown(f"### π Enlightened Response:") | |
# st.write(translated_answer) | |
# # Display source documents | |
# if source_documents: | |
# st.markdown("### π Source Documents:") | |
# for i, doc in enumerate(source_documents): | |
# with st.expander(f"Source Document {i + 1}"): | |
# st.write(doc.page_content) | |
# else: | |
# st.markdown("No source documents available.") | |
# # Execution time | |
# st.markdown(f"<p style='font-size: 14px;'>Response Time: <strong>{execution_time}</strong> seconds</p>", unsafe_allow_html=True) | |
# # Sharing options with icons | |
# st.markdown("---") | |
# st.markdown( | |
# """ | |
# <div style="text-align: center;"> | |
# <a href="https://wa.me/?text=Explore%20the%20Bhagavad%20Gita%20%26%20Yoga%20Sutras%20Assistant!%20Check%20it%20out%20here:%20https://your-platform-link" target="_blank"> | |
# <img src="https://img.icons8.com/color/48/whatsapp.png" alt="WhatsApp" style="margin-right: 10px;"> | |
# </a> | |
# <a href="https://www.linkedin.com/shareArticle?mini=true&url=https://your-platform-link&title=Explore%20Wisdom%20with%20Our%20Assistant" target="_blank"> | |
# <img src="https://img.icons8.com/color/48/linkedin.png" alt="LinkedIn"> | |
# </a> | |
# </div> | |
# """, | |
# unsafe_allow_html=True | |
# ) | |
# import time | |
# import os | |
# import json | |
# import streamlit as st | |
# from langchain_huggingface import HuggingFaceEmbeddings | |
# from langchain_chroma import Chroma | |
# from langchain.memory import ConversationBufferMemory | |
# from langchain.chains import ConversationalRetrievalChain | |
# from vectorize_documents import embeddings # Import embeddings from the vectorization script | |
# from deep_translator import GoogleTranslator # Import Google Translator for multilingual support | |
# # Set up working directory and API configuration | |
# working_dir = os.path.dirname(os.path.abspath(__file__)) | |
# config_data = json.load(open(f"{working_dir}/config.json")) | |
# os.environ["GROQ_API_KEY"] = config_data["GROQ_API_KEY"] | |
# def setup_vectorstore(): | |
# persist_directory = f"{working_dir}/vector_db_dir" | |
# vectorstore = Chroma( | |
# persist_directory=persist_directory, | |
# embedding_function=embeddings | |
# ) | |
# return vectorstore | |
# def chat_chain(vectorstore): | |
# from langchain_groq import ChatGroq # Import the LLM class | |
# llm = ChatGroq( | |
# model="llama-3.1-70b-versatile", # Replace with your LLM of choice | |
# temperature=0 # Set low temperature to reduce hallucinations | |
# ) | |
# retriever = vectorstore.as_retriever() # Retrieve relevant chunks | |
# memory = ConversationBufferMemory( | |
# llm=llm, | |
# output_key="answer", | |
# memory_key="chat_history", | |
# return_messages=True | |
# ) | |
# # Build the conversational retrieval chain | |
# chain = ConversationalRetrievalChain.from_llm( | |
# llm=llm, | |
# retriever=retriever, | |
# chain_type="stuff", # Define how documents are combined | |
# memory=memory, | |
# verbose=True, | |
# return_source_documents=True | |
# ) | |
# return chain | |
# # Streamlit UI | |
# st.set_page_config(page_title="Bhagavad Gita & Yoga Sutras Assistant", layout="wide") | |
# # Title and description with enhanced styling | |
# st.markdown( | |
# """ | |
# <div style="text-align: center;"> | |
# <h1 style="color: #4CAF50;">Wisdom Query Assistant</h1> | |
# <p style="font-size: 18px;">Explore timeless wisdom with the guidance of a knowledgeable assistant.</p> | |
# </div> | |
# """, | |
# unsafe_allow_html=True | |
# ) | |
# vectorstore = setup_vectorstore() | |
# chain = chat_chain(vectorstore) | |
# # Initialize session state for user name and chat | |
# if "user_name" not in st.session_state: | |
# st.session_state.user_name = "" | |
# if "chat_started" not in st.session_state: | |
# st.session_state.chat_started = False | |
# # Language options | |
# languages = [ | |
# "English", "Hindi", "Bengali", "Telugu", "Marathi", "Tamil", "Urdu", "Gujarati", "Malayalam", "Kannada", | |
# "Punjabi", "Odia", "Maithili", "Sanskrit", "Santali", "Kashmiri", "Nepali", "Dogri", "Manipuri", "Bodo", | |
# "Sindhi", "Assamese", "Konkani", "Awadhi", "Rajasthani", "Haryanvi", "Bihari", "Chhattisgarhi", "Magahi" | |
# ] | |
# # Input for user name | |
# if not st.session_state.chat_started: | |
# st.markdown("<h3 style='text-align: center;'>Welcome! Before we begin, please enter your name:</h3>", unsafe_allow_html=True) | |
# user_name = st.text_input("Enter your name:", placeholder="Your Name", key="name_input") | |
# start_button = st.button("Start Chat") | |
# if start_button and user_name.strip(): | |
# st.session_state.user_name = user_name.strip() | |
# st.session_state.chat_started = True | |
# st.success(f"Hello {st.session_state.user_name}! How can I assist you today?") | |
# # Chat functionality | |
# if st.session_state.chat_started: | |
# st.markdown(f"<h3 style='text-align: center;'>Hello {st.session_state.user_name}! Ask me about Wisdom:</h3>", unsafe_allow_html=True) | |
# # Language selection dropdown | |
# selected_language = st.selectbox("Select your preferred language:", options=languages, index=0) | |
# # User input and submit button at the bottom | |
# user_query = st.text_input("π¬ Your question:", placeholder="Type your query here...", key="query_box") | |
# submit_button = st.button("Submit") | |
# if submit_button and user_query.strip(): | |
# # Generate response | |
# start_time = time.time() | |
# response = chain({"question": user_query.strip()}) | |
# end_time = time.time() | |
# answer = response.get("answer", "No answer found.") | |
# source_documents = response.get("source_documents", []) | |
# execution_time = round(end_time - start_time, 2) | |
# # Translate the answer based on selected language | |
# if selected_language != "English": | |
# translator = GoogleTranslator(source="en", target=selected_language.lower()) | |
# translated_answer = translator.translate(answer) | |
# else: | |
# translated_answer = answer | |
# # Display the answer | |
# st.markdown("---") | |
# st.markdown(f"### π Enlightened Response:") | |
# st.write(translated_answer) | |
# # Display source documents | |
# if source_documents: | |
# st.markdown("### π Source Documents:") | |
# for i, doc in enumerate(source_documents): | |
# with st.expander(f"Source Document {i + 1}"): | |
# st.write(doc.page_content) | |
# else: | |
# st.markdown("No source documents available.") | |
# # Display execution time | |
# st.markdown(f"<p style='font-size: 14px;'>Response Time: <strong>{execution_time}</strong> seconds</p>", unsafe_allow_html=True) | |