File size: 19,288 Bytes
20459c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
import time
import os
import json
import random
import streamlit as st
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from vectorize_documents import embeddings
from deep_translator import GoogleTranslator
from googlesearch import search

# Set up working directory and API configuration
working_dir = os.path.dirname(os.path.abspath(__file__))
config_data = json.load(open(f"{working_dir}/config.json"))
os.environ["GROQ_API_KEY"] = config_data["GROQ_API_KEY"]

def setup_vectorstore():
    persist_directory = f"{working_dir}/vector_db_dir"
    vectorstore = Chroma(
        persist_directory=persist_directory,
        embedding_function=embeddings
    )
    return vectorstore

def chat_chain(vectorstore):
    from langchain_groq import ChatGroq

    llm = ChatGroq(
        model="llama-3.1-70b-versatile",
        temperature=0
    )
    retriever = vectorstore.as_retriever()
    memory = ConversationBufferMemory(
        llm=llm,
        output_key="answer",
        memory_key="chat_history",
        return_messages=True
    )

    chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        retriever=retriever,
        chain_type="stuff",
        memory=memory,
        verbose=True,
        return_source_documents=True
    )
    return chain

def fetch_daily_quote():
    query = "Bhagavad Gita inspirational quotes"
    results = list(search(query, num_results=5))  # Convert generator to list
    if results:
        return random.choice(results)
    return "Explore the Bhagavad Gita and Yoga Sutras for timeless wisdom!"

# Streamlit UI
st.set_page_config(
    page_title="Bhagavad Gita & Yoga Sutras Assistant",
    page_icon="πŸ•‰οΈ",
    layout="wide"
)

st.markdown(
    """
    <div style="text-align: center;">
        <h1 style="color: #4CAF50;">Wisdom Query Assistant</h1>
        <p style="font-size: 18px;">Explore timeless wisdom with the guidance of a knowledgeable assistant.</p>
    </div>
    """,
    unsafe_allow_html=True
)

# User name functionality
if "user_name" not in st.session_state:
    st.session_state.user_name = ""

if "chat_started" not in st.session_state:
    st.session_state.chat_started = False

if not st.session_state.chat_started:
    st.markdown("<h3 style='text-align: center;'>Welcome! Before we begin, please enter your name:</h3>", unsafe_allow_html=True)
    user_name = st.text_input("Enter your name:", placeholder="Your Name", key="name_input")
    start_button = st.button("Start Chat")

    if start_button and user_name.strip():
        st.session_state.user_name = user_name.strip()
        st.session_state.chat_started = True
        st.success(f"Hello {st.session_state.user_name}! How can I assist you today?")

# Display the daily quote
quote = fetch_daily_quote()
st.markdown(
    f"""
    <div style="text-align: center; background-color: #f0f8ff; padding: 10px; border-radius: 5px; margin-bottom: 20px;">
        <h4>🌟 Daily Wisdom: <a href="{quote}" target="_blank">{quote}</a></h4>
    </div>
    """,
    unsafe_allow_html=True
)

if st.session_state.chat_started:
    # Set up vectorstore and chat chain
    vectorstore = setup_vectorstore()
    chain = chat_chain(vectorstore)

    # Select language
    selected_language = st.selectbox("Select your preferred language:", options=[
        "English", "Hindi", "Bengali", "Telugu", "Marathi", "Tamil", "Urdu", "Gujarati", "Malayalam", "Kannada",
        "Punjabi", "Odia", "Maithili", "Sanskrit", "Santali", "Kashmiri", "Nepali", "Dogri", "Manipuri", "Bodo",
        "Sindhi", "Assamese", "Konkani", "Awadhi", "Rajasthani", "Haryanvi", "Bihari", "Chhattisgarhi", "Magahi"
    ], index=0)

    # Display chat history
    st.markdown("### πŸ’¬ Chat History")
    if "chat_history" in st.session_state:
        for chat in st.session_state.chat_history:
            st.markdown(f"**{st.session_state.user_name}:** {chat['question']}")
            st.markdown(f"**Assistant:** {chat['answer']}")
            st.markdown("---")

    # Input box for new query
    st.markdown(f"### Ask a new question, {st.session_state.user_name}:")
    with st.form("query_form", clear_on_submit=True):
        user_query = st.text_input("Your question:", key="query_input", placeholder="Type your query here...")
        submitted = st.form_submit_button("Submit")

    if submitted and user_query.strip():
        start_time = time.time()
        response = chain({"question": user_query.strip()})
        end_time = time.time()

        answer = response.get("answer", "No answer found.")
        source_documents = response.get("source_documents", [])
        execution_time = round(end_time - start_time, 2)

        # Translate response if needed
        if selected_language != "English":
            translator = GoogleTranslator(source="en", target=selected_language.lower())
            translated_answer = translator.translate(answer)
        else:
            translated_answer = answer

        # Save chat history
        if "chat_history" not in st.session_state:
            st.session_state.chat_history = []
        st.session_state.chat_history.append({
            "question": user_query.strip(),
            "answer": translated_answer
        })

        # Display source documents if available
        if source_documents:
            with st.expander("πŸ“œ Source Documents"):
                for i, doc in enumerate(source_documents):
                    st.write(f"**Document {i + 1}:** {doc.page_content}")

        st.write(f"**🌟 Enlightened Response:** {translated_answer}")
        st.write(f"_Response time: {execution_time} seconds_")

    # Sharing options
    st.markdown(
        """
        <div style="text-align: center;">
            <a href="https://wa.me/?text=Explore%20the%20Bhagavad%20Gita%20%26%20Yoga%20Sutras%20Assistant!%20Check%20it%20out%20here:%20https://krish30-wisdom-query-assistant.hf.space" target="_blank">
                <img src="https://img.icons8.com/color/48/whatsapp.png" alt="WhatsApp" style="margin-right: 10px;">
            </a>
            <a href="https://www.linkedin.com/shareArticle?mini=true&url=https://krish30-wisdom-query-assistant.hf.space&title=Explore%20Wisdom%20with%20Our%20Assistant" target="_blank">
                <img src="https://img.icons8.com/color/48/linkedin.png" alt="LinkedIn">
            </a>
        </div>
        """,
        unsafe_allow_html=True
    )












# import time
# import os
# import json
# import random
# import streamlit as st
# from langchain_huggingface import HuggingFaceEmbeddings
# from langchain_chroma import Chroma
# from langchain.memory import ConversationBufferMemory
# from langchain.chains import ConversationalRetrievalChain
# from vectorize_documents import embeddings
# from deep_translator import GoogleTranslator  # For multilingual support

# # Set up working directory and API configuration
# working_dir = os.path.dirname(os.path.abspath(__file__))
# config_data = json.load(open(f"{working_dir}/config.json"))
# os.environ["GROQ_API_KEY"] = config_data["GROQ_API_KEY"]

# def setup_vectorstore():
#     persist_directory = f"{working_dir}/vector_db_dir"
#     vectorstore = Chroma(
#         persist_directory=persist_directory,
#         embedding_function=embeddings
#     )
#     return vectorstore

# def chat_chain(vectorstore):
#     from langchain_groq import ChatGroq  # Import the LLM class

#     llm = ChatGroq(
#         model="llama-3.1-70b-versatile",  # Replace with your LLM of choice
#         temperature=0  # Set low temperature to reduce hallucinations
#     )
#     retriever = vectorstore.as_retriever()  # Retrieve relevant chunks
#     memory = ConversationBufferMemory(
#         llm=llm,
#         output_key="answer",
#         memory_key="chat_history",
#         return_messages=True
#     )

#     # Build the conversational retrieval chain
#     chain = ConversationalRetrievalChain.from_llm(
#         llm=llm,
#         retriever=retriever,
#         chain_type="stuff",  # Define how documents are combined
#         memory=memory,
#         verbose=True,
#         return_source_documents=True
#     )
#     return chain

# # Streamlit UI
# st.set_page_config(
#     page_title="Bhagavad Gita & Yoga Sutras Assistant",
#     page_icon="πŸ•‰οΈ",  # Custom meaningful favicon
#     layout="wide"
# )

# # Title and description with enhanced styling
# st.markdown(
#     """
#     <div style="text-align: center;">
#         <h1 style="color: #4CAF50;">Wisdom Query Assistant</h1>
#         <p style="font-size: 18px;">Explore timeless wisdom with the guidance of a knowledgeable assistant.</p>
#     </div>
#     """,
#     unsafe_allow_html=True
# )

# # Daily Wisdom Quote
# daily_quotes = [
#     "You have the right to work, but never to the fruit of work. – Bhagavad Gita",
#     "Yoga is the journey of the self, through the self, to the self. – Bhagavad Gita",
#     "When meditation is mastered, the mind is unwavering like the flame of a lamp in a windless place. – Bhagavad Gita",
#     "Do not dwell in the past, do not dream of the future, concentrate the mind on the present moment. – Buddha",
# ]
# st.markdown(
#     f"""
#     <div style="text-align: center; background-color: #f0f8ff; padding: 10px; border-radius: 5px; margin-bottom: 20px;">
#         <h4>🌟 Daily Wisdom: {random.choice(daily_quotes)}</h4>
#     </div>
#     """,
#     unsafe_allow_html=True
# )

# # Theme Toggle
# theme = st.radio("Choose a Theme:", options=["Light", "Dark"], index=0, horizontal=True)
# if theme == "Dark":
#     st.markdown(
#         """
#         <style>
#         body { background-color: #121212; color: white; }
#         </style>
#         """,
#         unsafe_allow_html=True
#     )

# vectorstore = setup_vectorstore()
# chain = chat_chain(vectorstore)

# # Initialize session state
# if "user_name" not in st.session_state:
#     st.session_state.user_name = ""

# if "chat_started" not in st.session_state:
#     st.session_state.chat_started = False

# # Language options
# languages = [
#     "English", "Hindi", "Bengali", "Telugu", "Marathi", "Tamil", "Urdu", "Gujarati", "Malayalam", "Kannada",
#     "Punjabi", "Odia", "Maithili", "Sanskrit", "Santali", "Kashmiri", "Nepali", "Dogri", "Manipuri", "Bodo",
#     "Sindhi", "Assamese", "Konkani", "Awadhi", "Rajasthani", "Haryanvi", "Bihari", "Chhattisgarhi", "Magahi"
# ]

# # Input for user name
# if not st.session_state.chat_started:
#     st.markdown("<h3 style='text-align: center;'>Welcome! Before we begin, please enter your name:</h3>", unsafe_allow_html=True)
#     user_name = st.text_input("Enter your name:", placeholder="Your Name", key="name_input")
#     start_button = st.button("Start Chat")

#     if start_button and user_name.strip():
#         st.session_state.user_name = user_name.strip()
#         st.session_state.chat_started = True
#         st.success(f"Hello {st.session_state.user_name}! How can I assist you today?")

# # Chat functionality
# if st.session_state.chat_started:
#     st.markdown(f"<h3 style='text-align: center;'>Hello {st.session_state.user_name}! Ask me anything:</h3>", unsafe_allow_html=True)

#     # Language selection dropdown
#     selected_language = st.selectbox("Select your preferred language:", options=languages, index=0)

#     # User input and buttons
#     user_query = st.text_input("πŸ’¬ Type your question:", placeholder="Type your query here...", key="query_box")
#     submit_button = st.button("Submit")

#     if submit_button and user_query.strip():
#         # Generate response
#         start_time = time.time()
#         response = chain({"question": user_query.strip()})
#         end_time = time.time()

#         answer = response.get("answer", "No answer found.")
#         source_documents = response.get("source_documents", [])
#         execution_time = round(end_time - start_time, 2)

#         # Translate response
#         if selected_language != "English":
#             translator = GoogleTranslator(source="en", target=selected_language.lower())
#             translated_answer = translator.translate(answer)
#         else:
#             translated_answer = answer

#         # Display answer
#         st.markdown("---")
#         st.markdown(f"### 🌟 Enlightened Response:")
#         st.write(translated_answer)

#         # Display source documents
#         if source_documents:
#             st.markdown("### πŸ“œ Source Documents:")
#             for i, doc in enumerate(source_documents):
#                 with st.expander(f"Source Document {i + 1}"):
#                     st.write(doc.page_content)
#         else:
#             st.markdown("No source documents available.")

#         # Execution time
#         st.markdown(f"<p style='font-size: 14px;'>Response Time: <strong>{execution_time}</strong> seconds</p>", unsafe_allow_html=True)

#     # Sharing options with icons
#     st.markdown("---")
#     st.markdown(
#         """
#         <div style="text-align: center;">
#             <a href="https://wa.me/?text=Explore%20the%20Bhagavad%20Gita%20%26%20Yoga%20Sutras%20Assistant!%20Check%20it%20out%20here:%20https://your-platform-link" target="_blank">
#                 <img src="https://img.icons8.com/color/48/whatsapp.png" alt="WhatsApp" style="margin-right: 10px;">
#             </a>
#             <a href="https://www.linkedin.com/shareArticle?mini=true&url=https://your-platform-link&title=Explore%20Wisdom%20with%20Our%20Assistant" target="_blank">
#                 <img src="https://img.icons8.com/color/48/linkedin.png" alt="LinkedIn">
#             </a>
#         </div>
#         """,
#         unsafe_allow_html=True
#     )
















# import time
# import os
# import json
# import streamlit as st
# from langchain_huggingface import HuggingFaceEmbeddings
# from langchain_chroma import Chroma
# from langchain.memory import ConversationBufferMemory
# from langchain.chains import ConversationalRetrievalChain
# from vectorize_documents import embeddings  # Import embeddings from the vectorization script
# from deep_translator import GoogleTranslator  # Import Google Translator for multilingual support

# # Set up working directory and API configuration
# working_dir = os.path.dirname(os.path.abspath(__file__))
# config_data = json.load(open(f"{working_dir}/config.json"))
# os.environ["GROQ_API_KEY"] = config_data["GROQ_API_KEY"]

# def setup_vectorstore():
#     persist_directory = f"{working_dir}/vector_db_dir"
#     vectorstore = Chroma(
#         persist_directory=persist_directory,
#         embedding_function=embeddings
#     )
#     return vectorstore

# def chat_chain(vectorstore):
#     from langchain_groq import ChatGroq  # Import the LLM class

#     llm = ChatGroq(
#         model="llama-3.1-70b-versatile",  # Replace with your LLM of choice
#         temperature=0  # Set low temperature to reduce hallucinations
#     )
#     retriever = vectorstore.as_retriever()  # Retrieve relevant chunks
#     memory = ConversationBufferMemory(
#         llm=llm,
#         output_key="answer",
#         memory_key="chat_history",
#         return_messages=True
#     )

#     # Build the conversational retrieval chain
#     chain = ConversationalRetrievalChain.from_llm(
#         llm=llm,
#         retriever=retriever,
#         chain_type="stuff",  # Define how documents are combined
#         memory=memory,
#         verbose=True,
#         return_source_documents=True
#     )
#     return chain

# # Streamlit UI
# st.set_page_config(page_title="Bhagavad Gita & Yoga Sutras Assistant", layout="wide")

# # Title and description with enhanced styling
# st.markdown(
#     """
#     <div style="text-align: center;">
#         <h1 style="color: #4CAF50;">Wisdom Query Assistant</h1>
#         <p style="font-size: 18px;">Explore timeless wisdom with the guidance of a knowledgeable assistant.</p>
#     </div>
#     """,
#     unsafe_allow_html=True
# )

# vectorstore = setup_vectorstore()
# chain = chat_chain(vectorstore)

# # Initialize session state for user name and chat
# if "user_name" not in st.session_state:
#     st.session_state.user_name = ""

# if "chat_started" not in st.session_state:
#     st.session_state.chat_started = False

# # Language options
# languages = [
#     "English", "Hindi", "Bengali", "Telugu", "Marathi", "Tamil", "Urdu", "Gujarati", "Malayalam", "Kannada",
#     "Punjabi", "Odia", "Maithili", "Sanskrit", "Santali", "Kashmiri", "Nepali", "Dogri", "Manipuri", "Bodo",
#     "Sindhi", "Assamese", "Konkani", "Awadhi", "Rajasthani", "Haryanvi", "Bihari", "Chhattisgarhi", "Magahi"
# ]

# # Input for user name
# if not st.session_state.chat_started:
#     st.markdown("<h3 style='text-align: center;'>Welcome! Before we begin, please enter your name:</h3>", unsafe_allow_html=True)
#     user_name = st.text_input("Enter your name:", placeholder="Your Name", key="name_input")
#     start_button = st.button("Start Chat")

#     if start_button and user_name.strip():
#         st.session_state.user_name = user_name.strip()
#         st.session_state.chat_started = True
#         st.success(f"Hello {st.session_state.user_name}! How can I assist you today?")

# # Chat functionality
# if st.session_state.chat_started:
#     st.markdown(f"<h3 style='text-align: center;'>Hello {st.session_state.user_name}! Ask me about Wisdom:</h3>", unsafe_allow_html=True)

#     # Language selection dropdown
#     selected_language = st.selectbox("Select your preferred language:", options=languages, index=0)

#     # User input and submit button at the bottom
#     user_query = st.text_input("πŸ’¬ Your question:", placeholder="Type your query here...", key="query_box")
#     submit_button = st.button("Submit")

#     if submit_button and user_query.strip():
#         # Generate response
#         start_time = time.time()
#         response = chain({"question": user_query.strip()})
#         end_time = time.time()

#         answer = response.get("answer", "No answer found.")
#         source_documents = response.get("source_documents", [])
#         execution_time = round(end_time - start_time, 2)

#         # Translate the answer based on selected language
#         if selected_language != "English":
#             translator = GoogleTranslator(source="en", target=selected_language.lower())
#             translated_answer = translator.translate(answer)
#         else:
#             translated_answer = answer

#         # Display the answer
#         st.markdown("---")
#         st.markdown(f"### 🌟 Enlightened Response:")
#         st.write(translated_answer)

#         # Display source documents
#         if source_documents:
#             st.markdown("### πŸ“œ Source Documents:")
#             for i, doc in enumerate(source_documents):
#                 with st.expander(f"Source Document {i + 1}"):
#                     st.write(doc.page_content)
#         else:
#             st.markdown("No source documents available.")

#         # Display execution time
#         st.markdown(f"<p style='font-size: 14px;'>Response Time: <strong>{execution_time}</strong> seconds</p>", unsafe_allow_html=True)