House.Ai / app.py
Krish30's picture
Upload 5 files
64eac63 verified
import os
import json
import sqlite3
from datetime import datetime
import streamlit as st
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from langchain_groq import ChatGroq
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from vectorize_documents import embeddings
working_dir = os.path.dirname(os.path.abspath(__file__))
config_data = json.load(open(f"{working_dir}/config.json"))
GROQ_API_KEY = config_data["GROQ_API_KEY"]
os.environ["GROQ_API_KEY"]= GROQ_API_KEY
# Set up the database with check_same_thread=False
def setup_db():
conn = sqlite3.connect("chat_history.db", check_same_thread=False) # Ensure thread-safe connection
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS chat_histories (
id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT,
timestamp TEXT,
day TEXT,
user_message TEXT,
assistant_response TEXT
)
""")
conn.commit()
return conn # Return the connection
# Function to save chat history to SQLite
def save_chat_history(conn, username, timestamp, day, user_message, assistant_response):
cursor = conn.cursor()
cursor.execute("""
INSERT INTO chat_histories (username, timestamp, day, user_message, assistant_response)
VALUES (?, ?, ?, ?, ?)
""", (username, timestamp, day, user_message, assistant_response))
conn.commit()
# Function to set up vectorstore for embeddings
def setup_vectorstore():
embeddings = HuggingFaceEmbeddings()
vectorstore = Chroma(persist_directory="House_vectordb", embedding_function=embeddings)
return vectorstore
# Function to set up the chatbot chain
def chat_chain(vectorstore):
llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0)
retriever = vectorstore.as_retriever()
memory = ConversationBufferMemory(
llm=llm,
output_key="answer",
memory_key="chat_history",
return_messages=True
)
chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
verbose=True,
return_source_documents=True
)
return chain
# Streamlit UI setup
st.set_page_config(page_title="House.Ai", page_icon="🤖AI", layout="centered")
st.title("🤖 House.Ai")
st.subheader("You can ask your general questions and queries to our AI")
# Step 1: Initialize the connection and check if the user is already logged in
if "conn" not in st.session_state:
st.session_state.conn = setup_db()
if "username" not in st.session_state:
username = st.text_input("Enter your name to proceed:")
if username:
with st.spinner("Loading chatbot interface... Please wait."):
st.session_state.username = username
st.session_state.chat_history = [] # Initialize empty chat history in memory
st.session_state.vectorstore = setup_vectorstore()
st.session_state.conversational_chain = chat_chain(st.session_state.vectorstore)
st.success(f"Welcome, {username}! The chatbot interface is ready.")
else:
username = st.session_state.username
# Step 2: Initialize components if not already set
if "conversational_chain" not in st.session_state:
st.session_state.vectorstore = setup_vectorstore()
st.session_state.conversational_chain = chat_chain(st.session_state.vectorstore)
# Step 3: Display the chat history in the UI
if "username" in st.session_state:
st.subheader(f"Hello {username}, start your query below!")
# Display chat history (messages exchanged between user and assistant)
if st.session_state.chat_history:
for message in st.session_state.chat_history:
if message['role'] == 'user':
with st.chat_message("user"):
st.markdown(message["content"])
elif message['role'] == 'assistant':
with st.chat_message("assistant"):
st.markdown(message["content"])
# Input field for the user to type their message
user_input = st.chat_input("Ask AI....")
if user_input:
with st.spinner("Processing your query... Please wait."):
# Save user input to chat history in memory
st.session_state.chat_history.append({"role": "user", "content": user_input})
# Display user's message in chatbot (for UI display)
with st.chat_message("user"):
st.markdown(user_input)
# Get assistant's response from the chain
with st.chat_message("assistant"):
response = st.session_state.conversational_chain({"question": user_input})
assistant_response = response["answer"]
st.markdown(assistant_response)
# Save assistant's response to chat history in memory
st.session_state.chat_history.append({"role": "assistant", "content": assistant_response})
# Save the chat history to the database (SQLite)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
day = datetime.now().strftime("%A") # Get the day of the week (e.g., Monday)
save_chat_history(st.session_state.conn, username, timestamp, day, user_input, assistant_response)