Upload 5 files
Browse files- app.py +137 -0
- chat_history.db +0 -0
- config.json +1 -0
- requirements.txt +9 -0
- vectorize_documents.py +56 -0
app.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import sqlite3
|
4 |
+
from datetime import datetime
|
5 |
+
import streamlit as st
|
6 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
7 |
+
from langchain_chroma import Chroma
|
8 |
+
from langchain_groq import ChatGroq
|
9 |
+
from langchain.memory import ConversationBufferMemory
|
10 |
+
from langchain.chains import ConversationalRetrievalChain
|
11 |
+
|
12 |
+
from vectorize_documents import embeddings
|
13 |
+
|
14 |
+
working_dir = os.path.dirname(os.path.abspath(__file__))
|
15 |
+
config_data = json.load(open(f"{working_dir}/config.json"))
|
16 |
+
GROQ_API_KEY = config_data["GROQ_API_KEY"]
|
17 |
+
os.environ["GROQ_API_KEY"]= GROQ_API_KEY
|
18 |
+
|
19 |
+
# Set up the database with check_same_thread=False
|
20 |
+
def setup_db():
|
21 |
+
conn = sqlite3.connect("chat_history.db", check_same_thread=False) # Ensure thread-safe connection
|
22 |
+
cursor = conn.cursor()
|
23 |
+
cursor.execute("""
|
24 |
+
CREATE TABLE IF NOT EXISTS chat_histories (
|
25 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
26 |
+
username TEXT,
|
27 |
+
timestamp TEXT,
|
28 |
+
day TEXT,
|
29 |
+
user_message TEXT,
|
30 |
+
assistant_response TEXT
|
31 |
+
)
|
32 |
+
""")
|
33 |
+
conn.commit()
|
34 |
+
return conn # Return the connection
|
35 |
+
|
36 |
+
# Function to save chat history to SQLite
|
37 |
+
def save_chat_history(conn, username, timestamp, day, user_message, assistant_response):
|
38 |
+
cursor = conn.cursor()
|
39 |
+
cursor.execute("""
|
40 |
+
INSERT INTO chat_histories (username, timestamp, day, user_message, assistant_response)
|
41 |
+
VALUES (?, ?, ?, ?, ?)
|
42 |
+
""", (username, timestamp, day, user_message, assistant_response))
|
43 |
+
conn.commit()
|
44 |
+
|
45 |
+
# Function to set up vectorstore for embeddings
|
46 |
+
def setup_vectorstore():
|
47 |
+
embeddings = HuggingFaceEmbeddings()
|
48 |
+
vectorstore = Chroma(persist_directory="House_vectordb", embedding_function=embeddings)
|
49 |
+
return vectorstore
|
50 |
+
|
51 |
+
# Function to set up the chatbot chain
|
52 |
+
def chat_chain(vectorstore):
|
53 |
+
llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0)
|
54 |
+
retriever = vectorstore.as_retriever()
|
55 |
+
memory = ConversationBufferMemory(
|
56 |
+
llm=llm,
|
57 |
+
output_key="answer",
|
58 |
+
memory_key="chat_history",
|
59 |
+
return_messages=True
|
60 |
+
)
|
61 |
+
chain = ConversationalRetrievalChain.from_llm(
|
62 |
+
llm=llm,
|
63 |
+
retriever=retriever,
|
64 |
+
chain_type="stuff",
|
65 |
+
memory=memory,
|
66 |
+
verbose=True,
|
67 |
+
return_source_documents=True
|
68 |
+
)
|
69 |
+
return chain
|
70 |
+
|
71 |
+
# Streamlit UI setup
|
72 |
+
st.set_page_config(page_title="House.Ai", page_icon="🤖AI", layout="centered")
|
73 |
+
|
74 |
+
st.title("🤖 House.Ai")
|
75 |
+
st.subheader("You can ask your general questions and queries to our AI")
|
76 |
+
|
77 |
+
# Step 1: Initialize the connection and check if the user is already logged in
|
78 |
+
if "conn" not in st.session_state:
|
79 |
+
st.session_state.conn = setup_db()
|
80 |
+
|
81 |
+
if "username" not in st.session_state:
|
82 |
+
username = st.text_input("Enter your name to proceed:")
|
83 |
+
if username:
|
84 |
+
with st.spinner("Loading chatbot interface... Please wait."):
|
85 |
+
st.session_state.username = username
|
86 |
+
st.session_state.chat_history = [] # Initialize empty chat history in memory
|
87 |
+
st.session_state.vectorstore = setup_vectorstore()
|
88 |
+
st.session_state.conversational_chain = chat_chain(st.session_state.vectorstore)
|
89 |
+
st.success(f"Welcome, {username}! The chatbot interface is ready.")
|
90 |
+
else:
|
91 |
+
username = st.session_state.username
|
92 |
+
|
93 |
+
# Step 2: Initialize components if not already set
|
94 |
+
if "conversational_chain" not in st.session_state:
|
95 |
+
st.session_state.vectorstore = setup_vectorstore()
|
96 |
+
st.session_state.conversational_chain = chat_chain(st.session_state.vectorstore)
|
97 |
+
|
98 |
+
# Step 3: Display the chat history in the UI
|
99 |
+
if "username" in st.session_state:
|
100 |
+
st.subheader(f"Hello {username}, start your query below!")
|
101 |
+
|
102 |
+
# Display chat history (messages exchanged between user and assistant)
|
103 |
+
if st.session_state.chat_history:
|
104 |
+
for message in st.session_state.chat_history:
|
105 |
+
if message['role'] == 'user':
|
106 |
+
with st.chat_message("user"):
|
107 |
+
st.markdown(message["content"])
|
108 |
+
elif message['role'] == 'assistant':
|
109 |
+
with st.chat_message("assistant"):
|
110 |
+
st.markdown(message["content"])
|
111 |
+
|
112 |
+
# Input field for the user to type their message
|
113 |
+
user_input = st.chat_input("Ask AI....")
|
114 |
+
|
115 |
+
if user_input:
|
116 |
+
with st.spinner("Processing your query... Please wait."):
|
117 |
+
# Save user input to chat history in memory
|
118 |
+
st.session_state.chat_history.append({"role": "user", "content": user_input})
|
119 |
+
|
120 |
+
# Display user's message in chatbot (for UI display)
|
121 |
+
with st.chat_message("user"):
|
122 |
+
st.markdown(user_input)
|
123 |
+
|
124 |
+
# Get assistant's response from the chain
|
125 |
+
with st.chat_message("assistant"):
|
126 |
+
response = st.session_state.conversational_chain({"question": user_input})
|
127 |
+
assistant_response = response["answer"]
|
128 |
+
st.markdown(assistant_response)
|
129 |
+
|
130 |
+
# Save assistant's response to chat history in memory
|
131 |
+
st.session_state.chat_history.append({"role": "assistant", "content": assistant_response})
|
132 |
+
|
133 |
+
# Save the chat history to the database (SQLite)
|
134 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
135 |
+
day = datetime.now().strftime("%A") # Get the day of the week (e.g., Monday)
|
136 |
+
save_chat_history(st.session_state.conn, username, timestamp, day, user_input, assistant_response)
|
137 |
+
|
chat_history.db
ADDED
Binary file (32.8 kB). View file
|
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"GROQ_API_KEY": "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"}
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.38.0
|
2 |
+
langchain-community==0.2.16
|
3 |
+
langchain-text-splitters==0.2.4
|
4 |
+
langchain-chroma==0.1.3
|
5 |
+
langchain-huggingface==0.0.3
|
6 |
+
langchain-groq==0.1.9
|
7 |
+
unstructured==0.15.0
|
8 |
+
nltk==3.8.1
|
9 |
+
deep-translator
|
vectorize_documents.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_text_splitters import CharacterTextSplitter
|
2 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
3 |
+
from langchain_chroma import Chroma
|
4 |
+
from langchain.docstore.document import Document
|
5 |
+
import pandas as pd
|
6 |
+
import os
|
7 |
+
import glob
|
8 |
+
|
9 |
+
# Define a function to perform vectorization for multiple CSV files
|
10 |
+
def vectorize_documents():
|
11 |
+
embeddings = HuggingFaceEmbeddings()
|
12 |
+
|
13 |
+
# Directory containing multiple CSV files
|
14 |
+
csv_directory = "Data" # Replace with your folder name
|
15 |
+
csv_files = glob.glob(os.path.join(csv_directory, "*.csv")) # Find all CSV files in the folder
|
16 |
+
|
17 |
+
documents = []
|
18 |
+
|
19 |
+
# Load and concatenate all CSV files
|
20 |
+
for file_path in csv_files:
|
21 |
+
df = pd.read_csv(file_path)
|
22 |
+
for _, row in df.iterrows():
|
23 |
+
# Combine all columns in the row into a single string
|
24 |
+
row_content = " ".join(row.astype(str))
|
25 |
+
documents.append(Document(page_content=row_content))
|
26 |
+
|
27 |
+
# Splitting the text and creating chunks of these documents
|
28 |
+
text_splitter = CharacterTextSplitter(
|
29 |
+
chunk_size=2000,
|
30 |
+
chunk_overlap=500
|
31 |
+
)
|
32 |
+
|
33 |
+
text_chunks = text_splitter.split_documents(documents)
|
34 |
+
|
35 |
+
# Process text chunks in batches
|
36 |
+
batch_size = 5000 # Chroma's batch size limit is 5461, set a slightly smaller size for safety
|
37 |
+
for i in range(0, len(text_chunks), batch_size):
|
38 |
+
batch = text_chunks[i:i + batch_size]
|
39 |
+
|
40 |
+
# Store the batch in Chroma vector DB
|
41 |
+
vectordb = Chroma.from_documents(
|
42 |
+
documents=batch,
|
43 |
+
embedding=embeddings,
|
44 |
+
persist_directory="House_vectordb"
|
45 |
+
)
|
46 |
+
|
47 |
+
print("Documents Vectorized and saved in VectorDB")
|
48 |
+
|
49 |
+
# Expose embeddings if needed
|
50 |
+
embeddings = HuggingFaceEmbeddings()
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
# Main guard to prevent execution on import
|
55 |
+
if __name__ == "__main__":
|
56 |
+
vectorize_documents()
|