File size: 13,388 Bytes
925ac7f b7fabea 54d8c8e fd62121 834ab51 f3c3cd9 925ac7f ee6a180 144f299 68e6513 f3c3cd9 e2a9d9f f3c3cd9 68e6513 834ab51 144f299 1580227 f16f37c fd62121 f16f37c 144f299 1580227 890203a 54d8c8e 68e6513 fbdc657 72ea5f2 fbdc657 68e6513 fbdc657 68e6513 144f299 68e6513 425ab63 fbdc657 144f299 fbdc657 68e6513 fbdc657 68e6513 f16f37c 68e6513 ee6a180 1580227 54d8c8e 1580227 925ac7f fbdc657 fd62121 1580227 fd62121 144f299 3433b65 54d8c8e 3433b65 fbdc657 3433b65 890203a fbdc657 3433b65 144f299 3433b65 890203a 3433b65 890203a 3433b65 890203a 3433b65 890203a 3433b65 890203a 3433b65 144f299 3433b65 890203a fbdc657 890203a 3433b65 144f299 1580227 3433b65 1580227 3433b65 890203a 3433b65 144f299 1580227 3433b65 890203a 3433b65 890203a f3c3cd9 890203a f3c3cd9 3433b65 890203a 3433b65 890203a 3433b65 890203a 3433b65 925ac7f 54d8c8e 68e6513 54d8c8e c95ec33 54d8c8e 68e6513 54d8c8e 68e6513 fbdc657 890203a 68e6513 fbdc657 68e6513 fbdc657 890203a 68e6513 fbdc657 890203a 68e6513 fbdc657 890203a fbdc657 890203a fbdc657 890203a fbdc657 890203a fd62121 890203a fd62121 890203a fd62121 890203a fd62121 890203a fbdc657 890203a fbdc657 890203a fbdc657 890203a fbdc657 890203a fbdc657 890203a 68e6513 54d8c8e bbae640 f3c3cd9 0c40207 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import pandas as pd
import gradio as gr
import os
from gradio_rangeslider import RangeSlider
import calendar
import datetime
import numpy as np
from huggingface_hub import HfApi
from apscheduler.schedulers.background import BackgroundScheduler
from src.filter_utils import filter, filter_cols
from src.process_data import merge_data
import assets.text_content as tc
"""
CONSTANTS
"""
# For restarting the gradio application every 24 Hrs
TIME = 86400 # in seconds # Reload will not work locally - requires HFToken # The app launches locally as expected - only without the reload utility
"""
AUTO RESTART HF SPACE
"""
HF_TOKEN = os.environ.get("H4_TOKEN", None)
api = HfApi()
def restart_space():
api.restart_space(repo_id=tc.HF_REPO, token=HF_TOKEN)
# Main Leaderboard containing everything
# text_leaderboard = pd.read_csv(os.path.join('assets', 'merged_data.csv'))
text_leaderboard = merge_data()
text_leaderboard = text_leaderboard.sort_values(by=tc.CLEMSCORE, ascending=False)
# When displaying latency values
text_leaderboard[tc.LATENCY] = text_leaderboard[tc.LATENCY].round(1)
text_leaderboard[tc.CLEMSCORE] = text_leaderboard[tc.CLEMSCORE].round(1)
open_weight_df = text_leaderboard[text_leaderboard[tc.OPEN_WEIGHT] == True]
if not open_weight_df.empty: # Check if filtered df is non-empty
# Get max parameter size, ignoring NaN values
params = open_weight_df[tc.PARAMS].dropna()
max_parameter_size = params.max() if not params.empty else 0
# Short leaderboard containing fixed columns
short_leaderboard = filter_cols(text_leaderboard)
# html_table = short_leaderboard.to_html(escape=False, index=False)
## Extract data
langs = []
licenses = []
ip_prices = []
op_prices = []
latencies = []
parameters = []
contexts = []
dates = []
for i in range(len(text_leaderboard)):
lang_splits = text_leaderboard.iloc[i][tc.LANGS].split(',')
lang_splits = [s.strip() for s in lang_splits]
langs += lang_splits
license_name = text_leaderboard.iloc[i][tc.LICENSE_NAME]
licenses.append(license_name)
ip_prices.append(text_leaderboard.iloc[i][tc.INPUT])
op_prices.append(text_leaderboard.iloc[i][tc.OUTPUT])
latencies.append(text_leaderboard.iloc[i][tc.LATENCY])
parameters.append(text_leaderboard.iloc[i][tc.PARAMS])
contexts.append(text_leaderboard.iloc[i][tc.CONTEXT])
dates.append(text_leaderboard.iloc[i][tc.RELEASE_DATE])
langs = list(set(langs))
langs.sort()
licenses = list(set(licenses))
licenses.sort()
max_input_price = max(ip_prices)
max_output_price = max(op_prices)
max_latency = text_leaderboard[tc.LATENCY].max().round(3)
min_parameters = 0 if pd.isna(min(parameters)) else min(parameters)
max_parameter = max_parameter_size
parameter_step = 1
min_context = min(contexts)
max_context = max(contexts)
context_step = 8
min_date = min(dates)
max_date = max(dates)
# Date settings
today = datetime.date.today()
end_year = today.year
start_year = tc.START_YEAR
YEARS = list(range(int(start_year), int(end_year)+1))
YEARS = [str(y) for y in YEARS]
MONTHS = list(calendar.month_name[1:])
TITLE = tc.TITLE
llm_calc_app = gr.Blocks()
with llm_calc_app:
gr.HTML(TITLE)
with gr.Row():
#####################################
# First Column
####################################
## Language Select
with gr.Column(scale=2):
with gr.Row():
lang_dropdown = gr.Dropdown(
choices=langs,
value=[],
multiselect=True,
label="Languages π£οΈ"
)
## Release Date range selection
with gr.Row():
start_year_dropdown = gr.Dropdown(
choices = YEARS,
value=[],
label="Model Release - Year ποΈ"
)
start_month_dropdown = gr.Dropdown(
choices = MONTHS,
value=[],
label="Month π"
)
end_year_dropdown = gr.Dropdown(
choices = YEARS,
value=[],
label="End - Year ποΈ"
)
end_month_dropdown = gr.Dropdown(
choices = MONTHS,
value=[],
label="Month π"
)
## Price selection
with gr.Row():
input_pricing_slider = RangeSlider(
minimum=0,
maximum=max_input_price,
value=(0, max_input_price),
label="π²/1M input tokens",
elem_id="double-slider-3"
)
output_pricing_slider = RangeSlider(
minimum=0,
maximum=max_output_price,
value=(0, max_output_price),
label="π²/1M output tokens",
elem_id="double-slider-4"
)
# License selection
with gr.Row():
license_checkbox = gr.CheckboxGroup(
choices=licenses,
value=licenses,
label="License π‘οΈ",
)
#############################################################
# Second Column
#############################################################
with gr.Column(scale=1):
####### parameters ###########
with gr.Row():
parameter_slider = RangeSlider(
minimum=0,
maximum=max_parameter,
label=f"Parameters π {int(min_parameters)}B - {int(max_parameter)}B+",
elem_id="double-slider-1",
step=parameter_step
)
########### Context range ################
with gr.Row():
context_slider = RangeSlider(
minimum=0,
maximum=max_context,
label="Context (k) π",
elem_id="double-slider-2",
step=context_step
)
############# Modality selection checkbox ###############
with gr.Row():
multimodal_checkbox = gr.CheckboxGroup(
choices=[tc.TEXT, tc.SINGLE_IMG, tc.MULT_IMG, tc.AUDIO, tc.VIDEO],
value=[],
label="Modalities ππ·π§π¬",
)
# ############### Model Type Checkbox ###############
with gr.Row():
open_weight_checkbox = gr.CheckboxGroup(
choices=[tc.OPEN, tc.COMM],
value=[tc.OPEN, tc.COMM],
label="Model Type π πΌ",
)
with gr.Row():
"""
Main Leaderboard Row
"""
leaderboard_table = gr.Dataframe(
value=short_leaderboard,
elem_id="text-leaderboard-table",
interactive=False,
visible=True,
datatype=['str', 'number', 'number', 'date', 'number', 'number', 'number', 'number', 'markdown']
)
dummy_leaderboard_table = gr.Dataframe(
value=text_leaderboard,
elem_id="dummy-leaderboard-table",
interactive=False,
visible=False
)
lang_dropdown.change(
filter,
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
[leaderboard_table],
queue=True
)
parameter_slider.change(
filter,
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
[leaderboard_table],
queue=True
)
input_pricing_slider.change(
filter,
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
[leaderboard_table],
queue=True
)
output_pricing_slider.change(
filter,
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
[leaderboard_table],
queue=True
)
multimodal_checkbox.change(
filter,
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
[leaderboard_table],
queue=True
)
open_weight_checkbox.change(
filter,
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
[leaderboard_table],
queue=True
)
context_slider.change(
filter,
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
[leaderboard_table],
queue=True
)
start_year_dropdown.change(
filter,
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
[leaderboard_table],
queue=True
)
start_month_dropdown.change(
filter,
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
[leaderboard_table],
queue=True
)
end_year_dropdown.change(
filter,
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
[leaderboard_table],
queue=True
)
end_month_dropdown.change(
filter,
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
[leaderboard_table],
queue=True
)
license_checkbox.change(
filter,
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
[leaderboard_table],
queue=True
)
llm_calc_app.load()
llm_calc_app.queue()
# Add scheduler to auto-restart the HF space at every TIME interval and update every component each time
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, 'interval', seconds=TIME)
scheduler.start()
# Log current start time and scheduled restart time
print(datetime.datetime.now())
print(f"Scheduled restart at {datetime.datetime.now() + datetime.timedelta(seconds=TIME)}")
llm_calc_app.launch()
|