Commit
Β·
890203a
1
Parent(s):
df99250
wworking date dropdown
Browse files- app.py +76 -107
- assets/merged_data.csv +1 -1
- assets/text_content.py +19 -2
- src/filter_utils.py +63 -60
- test.py +0 -10
app.py
CHANGED
@@ -18,8 +18,11 @@ text_leaderboard[tc.LATENCY] = text_leaderboard[tc.LATENCY].round(1)
|
|
18 |
text_leaderboard[tc.CLEMSCORE] = text_leaderboard[tc.CLEMSCORE].round(1)
|
19 |
|
20 |
open_weight_df = text_leaderboard[text_leaderboard[tc.OPEN_WEIGHT] == True]
|
|
|
21 |
if not open_weight_df.empty: # Check if filtered df is non-empty
|
22 |
-
|
|
|
|
|
23 |
|
24 |
# Short leaderboard containing fixed columns
|
25 |
short_leaderboard = filter_cols(text_leaderboard)
|
@@ -92,7 +95,7 @@ with llm_calc_app:
|
|
92 |
# First Column
|
93 |
####################################
|
94 |
## Language Select
|
95 |
-
with gr.Column():
|
96 |
|
97 |
with gr.Row():
|
98 |
lang_dropdown = gr.Dropdown(
|
@@ -102,47 +105,50 @@ with llm_calc_app:
|
|
102 |
label="Languages π£οΈ"
|
103 |
)
|
104 |
|
|
|
|
|
|
|
105 |
with gr.Row():
|
106 |
-
|
107 |
-
|
108 |
-
choices=YEARS,
|
109 |
-
value=[YEARS[0]],
|
110 |
-
allow_custom_value=True
|
111 |
-
)
|
112 |
-
start_month = gr.Dropdown(
|
113 |
-
choices=MONTHS,
|
114 |
-
value=[MONTHS[0]],
|
115 |
-
allow_custom_value=True
|
116 |
-
)
|
117 |
-
|
118 |
-
with gr.Column():
|
119 |
-
end_year = gr.Dropdown(
|
120 |
-
choices=YEARS,
|
121 |
-
value=[YEARS[-1]],
|
122 |
-
allow_custom_value=True
|
123 |
-
)
|
124 |
-
end_month = gr.Dropdown(
|
125 |
-
choices=MONTHS,
|
126 |
-
value=[MONTHS[-1]],
|
127 |
-
allow_custom_value=True
|
128 |
-
)
|
129 |
-
|
130 |
-
|
131 |
-
# Multiodality Select
|
132 |
-
with gr.Row():
|
133 |
-
multimodal_checkbox = gr.CheckboxGroup(
|
134 |
-
choices=[tc.SINGLE_IMG, tc.MULT_IMG, tc.AUDIO, tc.VIDEO],
|
135 |
value=[],
|
136 |
-
label="
|
|
|
|
|
|
|
|
|
|
|
137 |
)
|
138 |
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
with gr.Row():
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
# License selection
|
148 |
with gr.Row():
|
@@ -155,9 +161,9 @@ with llm_calc_app:
|
|
155 |
#############################################################
|
156 |
# Second Column
|
157 |
#############################################################
|
158 |
-
with gr.Column():
|
159 |
|
160 |
-
#######
|
161 |
with gr.Row():
|
162 |
parameter_slider = RangeSlider(
|
163 |
minimum=0,
|
@@ -168,7 +174,7 @@ with llm_calc_app:
|
|
168 |
)
|
169 |
|
170 |
|
171 |
-
###########
|
172 |
|
173 |
with gr.Row():
|
174 |
context_slider = RangeSlider(
|
@@ -179,25 +185,23 @@ with llm_calc_app:
|
|
179 |
step=context_step
|
180 |
)
|
181 |
|
182 |
-
#############
|
183 |
with gr.Row():
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
label="π²/1M input tokens",
|
189 |
-
elem_id="double-slider-3"
|
190 |
)
|
|
|
191 |
|
192 |
-
###############
|
193 |
with gr.Row():
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
)
|
201 |
|
202 |
|
203 |
with gr.Row():
|
@@ -225,7 +229,7 @@ with llm_calc_app:
|
|
225 |
filter,
|
226 |
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
227 |
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
228 |
-
context_slider, open_weight_checkbox,
|
229 |
[leaderboard_table],
|
230 |
queue=True
|
231 |
)
|
@@ -234,7 +238,7 @@ with llm_calc_app:
|
|
234 |
filter,
|
235 |
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
236 |
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
237 |
-
context_slider, open_weight_checkbox,
|
238 |
[leaderboard_table],
|
239 |
queue=True
|
240 |
)
|
@@ -243,7 +247,7 @@ with llm_calc_app:
|
|
243 |
filter,
|
244 |
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
245 |
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
246 |
-
context_slider, open_weight_checkbox,
|
247 |
[leaderboard_table],
|
248 |
queue=True
|
249 |
)
|
@@ -252,7 +256,7 @@ with llm_calc_app:
|
|
252 |
filter,
|
253 |
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
254 |
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
255 |
-
context_slider, open_weight_checkbox,
|
256 |
[leaderboard_table],
|
257 |
queue=True
|
258 |
)
|
@@ -261,7 +265,7 @@ with llm_calc_app:
|
|
261 |
filter,
|
262 |
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
263 |
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
264 |
-
context_slider, open_weight_checkbox,
|
265 |
[leaderboard_table],
|
266 |
queue=True
|
267 |
)
|
@@ -270,7 +274,7 @@ with llm_calc_app:
|
|
270 |
filter,
|
271 |
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
272 |
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
273 |
-
context_slider, open_weight_checkbox,
|
274 |
[leaderboard_table],
|
275 |
queue=True
|
276 |
)
|
@@ -279,43 +283,43 @@ with llm_calc_app:
|
|
279 |
filter,
|
280 |
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
281 |
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
282 |
-
context_slider, open_weight_checkbox,
|
283 |
[leaderboard_table],
|
284 |
queue=True
|
285 |
)
|
286 |
|
287 |
-
|
288 |
filter,
|
289 |
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
290 |
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
291 |
-
context_slider, open_weight_checkbox,
|
292 |
[leaderboard_table],
|
293 |
queue=True
|
294 |
)
|
295 |
|
296 |
-
|
297 |
filter,
|
298 |
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
299 |
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
300 |
-
context_slider, open_weight_checkbox,
|
301 |
[leaderboard_table],
|
302 |
queue=True
|
303 |
)
|
304 |
|
305 |
-
|
306 |
filter,
|
307 |
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
308 |
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
309 |
-
context_slider, open_weight_checkbox,
|
310 |
[leaderboard_table],
|
311 |
queue=True
|
312 |
)
|
313 |
|
314 |
-
|
315 |
filter,
|
316 |
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
317 |
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
318 |
-
context_slider, open_weight_checkbox,
|
319 |
[leaderboard_table],
|
320 |
queue=True
|
321 |
)
|
@@ -324,7 +328,7 @@ with llm_calc_app:
|
|
324 |
filter,
|
325 |
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
326 |
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
327 |
-
context_slider, open_weight_checkbox,
|
328 |
[leaderboard_table],
|
329 |
queue=True
|
330 |
)
|
@@ -332,38 +336,3 @@ with llm_calc_app:
|
|
332 |
llm_calc_app.load()
|
333 |
llm_calc_app.queue()
|
334 |
llm_calc_app.launch()
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
"""
|
339 |
-
model_name, input_price, output_price,
|
340 |
-
multimodality_image,multimodality_multiple_image,multimodality_audio,multimodality_video,
|
341 |
-
source,licence_name,licence_url,languages,release_date,
|
342 |
-
parameters_estimated,parameters_actual,
|
343 |
-
|
344 |
-
open_weight,context,
|
345 |
-
|
346 |
-
additional_prices_context_caching,
|
347 |
-
additional_prices_context_storage,
|
348 |
-
additional_prices_image_input,additional_prices_image_output,additional_prices_video_input,additional_prices_video_output,additional_prices_audio_input,additional_prices_audio_output,clemscore_v1.6.5_multimodal,clemscore_v1.6.5_ascii,clemscore_v1.6,latency_v1.6,latency_v1.6.5_multimodal,latency_v1.6.5_ascii,
|
349 |
-
|
350 |
-
average_clemscore,average_latency,parameters
|
351 |
-
|
352 |
-
Final list
|
353 |
-
|
354 |
-
model_name, input_price, output_price,
|
355 |
-
multimodality_image,multimodality_multiple_image,multimodality_audio,multimodality_video,
|
356 |
-
source,licence_name,licence_url,languages,release_date, open_weight,context, average_clemscore,average_latency,parameters
|
357 |
-
|
358 |
-
|
359 |
-
Filter
|
360 |
-
multimodality_image,multimodality_multiple_image,multimodality_audio,multimodality_video,
|
361 |
-
licence_name+licence_url, languages, release_date, open_weight
|
362 |
-
|
363 |
-
RR
|
364 |
-
model_name, input_price, output_price,
|
365 |
-
source, release_date
|
366 |
-
|
367 |
-
"""
|
368 |
-
|
369 |
-
|
|
|
18 |
text_leaderboard[tc.CLEMSCORE] = text_leaderboard[tc.CLEMSCORE].round(1)
|
19 |
|
20 |
open_weight_df = text_leaderboard[text_leaderboard[tc.OPEN_WEIGHT] == True]
|
21 |
+
print(open_weight_df[tc.PARAMS])
|
22 |
if not open_weight_df.empty: # Check if filtered df is non-empty
|
23 |
+
# Get max parameter size, ignoring NaN values
|
24 |
+
params = open_weight_df[tc.PARAMS].dropna()
|
25 |
+
max_parameter_size = params.max() if not params.empty else 0
|
26 |
|
27 |
# Short leaderboard containing fixed columns
|
28 |
short_leaderboard = filter_cols(text_leaderboard)
|
|
|
95 |
# First Column
|
96 |
####################################
|
97 |
## Language Select
|
98 |
+
with gr.Column(scale=2):
|
99 |
|
100 |
with gr.Row():
|
101 |
lang_dropdown = gr.Dropdown(
|
|
|
105 |
label="Languages π£οΈ"
|
106 |
)
|
107 |
|
108 |
+
|
109 |
+
## Release Date range selection
|
110 |
+
|
111 |
with gr.Row():
|
112 |
+
start_year_dropdown = gr.Dropdown(
|
113 |
+
choices = YEARS,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
value=[],
|
115 |
+
label="Model Release - Year ποΈ"
|
116 |
+
)
|
117 |
+
start_month_dropdown = gr.Dropdown(
|
118 |
+
choices = MONTHS,
|
119 |
+
value=[],
|
120 |
+
label="Month π"
|
121 |
)
|
122 |
|
123 |
+
end_year_dropdown = gr.Dropdown(
|
124 |
+
choices = YEARS,
|
125 |
+
value=[],
|
126 |
+
label="End - Year ποΈ"
|
127 |
+
)
|
128 |
+
end_month_dropdown = gr.Dropdown(
|
129 |
+
choices = MONTHS,
|
130 |
+
value=[],
|
131 |
+
label="Month π"
|
132 |
+
)
|
133 |
+
|
134 |
+
## Price selection
|
135 |
with gr.Row():
|
136 |
+
|
137 |
+
input_pricing_slider = RangeSlider(
|
138 |
+
minimum=0,
|
139 |
+
maximum=max_input_price,
|
140 |
+
value=(0, max_input_price),
|
141 |
+
label="π²/1M input tokens",
|
142 |
+
elem_id="double-slider-3"
|
143 |
+
)
|
144 |
+
|
145 |
+
output_pricing_slider = RangeSlider(
|
146 |
+
minimum=0,
|
147 |
+
maximum=max_output_price,
|
148 |
+
value=(0, max_output_price),
|
149 |
+
label="π²/1M output tokens",
|
150 |
+
elem_id="double-slider-4"
|
151 |
+
)
|
152 |
|
153 |
# License selection
|
154 |
with gr.Row():
|
|
|
161 |
#############################################################
|
162 |
# Second Column
|
163 |
#############################################################
|
164 |
+
with gr.Column(scale=1):
|
165 |
|
166 |
+
####### parameters ###########
|
167 |
with gr.Row():
|
168 |
parameter_slider = RangeSlider(
|
169 |
minimum=0,
|
|
|
174 |
)
|
175 |
|
176 |
|
177 |
+
########### Context range ################
|
178 |
|
179 |
with gr.Row():
|
180 |
context_slider = RangeSlider(
|
|
|
185 |
step=context_step
|
186 |
)
|
187 |
|
188 |
+
############# Modality selection checkbox ###############
|
189 |
with gr.Row():
|
190 |
+
multimodal_checkbox = gr.CheckboxGroup(
|
191 |
+
choices=[tc.SINGLE_IMG, tc.MULT_IMG, tc.AUDIO, tc.VIDEO],
|
192 |
+
value=[],
|
193 |
+
label="Additional Modalities π·π§π¬",
|
|
|
|
|
194 |
)
|
195 |
+
|
196 |
|
197 |
+
# ############### Model Type Checkbox ###############
|
198 |
with gr.Row():
|
199 |
+
open_weight_checkbox = gr.CheckboxGroup(
|
200 |
+
choices=[tc.OPEN, tc.COMM],
|
201 |
+
value=[tc.OPEN, tc.COMM],
|
202 |
+
label="Model Type π πΌ",
|
203 |
+
)
|
204 |
+
|
|
|
205 |
|
206 |
|
207 |
with gr.Row():
|
|
|
229 |
filter,
|
230 |
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
231 |
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
232 |
+
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
|
233 |
[leaderboard_table],
|
234 |
queue=True
|
235 |
)
|
|
|
238 |
filter,
|
239 |
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
240 |
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
241 |
+
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
|
242 |
[leaderboard_table],
|
243 |
queue=True
|
244 |
)
|
|
|
247 |
filter,
|
248 |
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
249 |
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
250 |
+
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
|
251 |
[leaderboard_table],
|
252 |
queue=True
|
253 |
)
|
|
|
256 |
filter,
|
257 |
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
258 |
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
259 |
+
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
|
260 |
[leaderboard_table],
|
261 |
queue=True
|
262 |
)
|
|
|
265 |
filter,
|
266 |
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
267 |
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
268 |
+
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
|
269 |
[leaderboard_table],
|
270 |
queue=True
|
271 |
)
|
|
|
274 |
filter,
|
275 |
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
276 |
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
277 |
+
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
|
278 |
[leaderboard_table],
|
279 |
queue=True
|
280 |
)
|
|
|
283 |
filter,
|
284 |
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
285 |
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
286 |
+
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
|
287 |
[leaderboard_table],
|
288 |
queue=True
|
289 |
)
|
290 |
|
291 |
+
start_year_dropdown.change(
|
292 |
filter,
|
293 |
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
294 |
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
295 |
+
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
|
296 |
[leaderboard_table],
|
297 |
queue=True
|
298 |
)
|
299 |
|
300 |
+
start_month_dropdown.change(
|
301 |
filter,
|
302 |
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
303 |
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
304 |
+
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
|
305 |
[leaderboard_table],
|
306 |
queue=True
|
307 |
)
|
308 |
|
309 |
+
end_year_dropdown.change(
|
310 |
filter,
|
311 |
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
312 |
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
313 |
+
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
|
314 |
[leaderboard_table],
|
315 |
queue=True
|
316 |
)
|
317 |
|
318 |
+
end_month_dropdown.change(
|
319 |
filter,
|
320 |
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
321 |
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
322 |
+
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
|
323 |
[leaderboard_table],
|
324 |
queue=True
|
325 |
)
|
|
|
328 |
filter,
|
329 |
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
|
330 |
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
|
331 |
+
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox],
|
332 |
[leaderboard_table],
|
333 |
queue=True
|
334 |
)
|
|
|
336 |
llm_calc_app.load()
|
337 |
llm_calc_app.queue()
|
338 |
llm_calc_app.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
assets/merged_data.csv
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
Model Name,Latency (s),Clemscore,Parameters (B),Release Date,Open Weight,Languages,Context Size (k),License Name,License URL,Single Image,
|
2 |
o1-preview-2024-09-12,7.368572853601854,73.63,,2024-09-12,False,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,15.0,60.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-09-12
|
3 |
gpt-4-1106-vision-preview,4.712557435752081,73.55,,2023-11-06,False,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,True,True,False,False,10.0,30.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2023-11-06
|
4 |
claude-3-5-sonnet-20240620,2.0645066812060726,68.925,,2024-06-20,False,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,True,True,False,False,3.0,15.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-06-20
|
|
|
1 |
+
Model Name,Latency (s),Clemscore,Parameters (B),Release Date,Open Weight,Languages,Context Size (k),License Name,License URL,Single Image,Multi Image,Audio,Video,Input $/1M tokens,Output $/1M tokens,License,Temp Date
|
2 |
o1-preview-2024-09-12,7.368572853601854,73.63,,2024-09-12,False,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,False,False,False,False,15.0,60.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-09-12
|
3 |
gpt-4-1106-vision-preview,4.712557435752081,73.55,,2023-11-06,False,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,True,True,False,False,10.0,30.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2023-11-06
|
4 |
claude-3-5-sonnet-20240620,2.0645066812060726,68.925,,2024-06-20,False,English,,Apache 2.0,https://www.apache.org/licenses/LICENSE-2.0,True,True,False,False,3.0,15.0,"<a href=""https://www.apache.org/licenses/LICENSE-2.0"" style=""color: blue;"">Apache 2.0</a>",2024-06-20
|
assets/text_content.py
CHANGED
@@ -10,6 +10,9 @@ RESULT_FILE = "results.csv"
|
|
10 |
LATENCY_SUFFIX = "_latency.csv"
|
11 |
|
12 |
# Setup Column Names
|
|
|
|
|
|
|
13 |
DEFAULT_MODEL_NAME = "Unnamed: 0"
|
14 |
DEFAULT_CLEMSCORE = "-, clemscore"
|
15 |
|
@@ -24,7 +27,7 @@ CONTEXT = "Context Size (k)"
|
|
24 |
LICENSE_NAME = "License Name"
|
25 |
LICENSE_URL = "License URL"
|
26 |
SINGLE_IMG = "Single Image"
|
27 |
-
MULT_IMG = "
|
28 |
AUDIO = "Audio"
|
29 |
VIDEO = "Video"
|
30 |
INPUT = "Input $/1M tokens"
|
@@ -39,4 +42,18 @@ COMM = "Commercial"
|
|
39 |
TITLE = """<h1 align="center" id="space-title"> LLM Calculator βοΈβ‘ ππ°</h1>"""
|
40 |
|
41 |
# Date Picker (set as Dropdown until datetime object is fixed)
|
42 |
-
START_YEAR = "2020"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
LATENCY_SUFFIX = "_latency.csv"
|
11 |
|
12 |
# Setup Column Names
|
13 |
+
# Note - Changing this does not affect the already generated csv `merged_data.csv`
|
14 |
+
# Run `src/process_data.py` for this
|
15 |
+
|
16 |
DEFAULT_MODEL_NAME = "Unnamed: 0"
|
17 |
DEFAULT_CLEMSCORE = "-, clemscore"
|
18 |
|
|
|
27 |
LICENSE_NAME = "License Name"
|
28 |
LICENSE_URL = "License URL"
|
29 |
SINGLE_IMG = "Single Image"
|
30 |
+
MULT_IMG = "Multi Image"
|
31 |
AUDIO = "Audio"
|
32 |
VIDEO = "Video"
|
33 |
INPUT = "Input $/1M tokens"
|
|
|
42 |
TITLE = """<h1 align="center" id="space-title"> LLM Calculator βοΈβ‘ ππ°</h1>"""
|
43 |
|
44 |
# Date Picker (set as Dropdown until datetime object is fixed)
|
45 |
+
START_YEAR = "2020"
|
46 |
+
MONTH_MAP = {
|
47 |
+
"January": 1,
|
48 |
+
"February": 2,
|
49 |
+
"March": 3,
|
50 |
+
"April": 4,
|
51 |
+
"May": 5,
|
52 |
+
"June": 6,
|
53 |
+
"July": 7,
|
54 |
+
"August": 8,
|
55 |
+
"September": 9,
|
56 |
+
"October": 10,
|
57 |
+
"November": 11,
|
58 |
+
"December": 12
|
59 |
+
}
|
src/filter_utils.py
CHANGED
@@ -2,6 +2,11 @@
|
|
2 |
|
3 |
import pandas as pd
|
4 |
import assets.text_content as tc
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def filter_cols(df):
|
7 |
|
@@ -19,6 +24,7 @@ def filter_cols(df):
|
|
19 |
|
20 |
return df
|
21 |
|
|
|
22 |
def convert_date_components_to_timestamp(year: str, month: str) -> int:
|
23 |
"""Convert year and month strings to timestamp."""
|
24 |
# Create a datetime object for the first day of the month
|
@@ -26,70 +32,79 @@ def convert_date_components_to_timestamp(year: str, month: str) -> int:
|
|
26 |
return int(pd.to_datetime(date_str).timestamp())
|
27 |
|
28 |
def filter_by_date(df: pd.DataFrame,
|
29 |
-
start_year
|
30 |
-
|
31 |
-
|
32 |
-
end_month: str,
|
33 |
-
date_column: str) -> pd.DataFrame:
|
34 |
"""
|
35 |
Filter DataFrame by date range using separate year and month components.
|
36 |
-
|
37 |
-
Args:
|
38 |
-
df: DataFrame to filter
|
39 |
-
start_year: Starting year (e.g., "2023")
|
40 |
-
start_month: Starting month (e.g., "1" for January)
|
41 |
-
end_year: Ending year (e.g., "2024")
|
42 |
-
end_month: Ending month (e.g., "12" for December)
|
43 |
-
date_column: Name of the date column to filter on
|
44 |
"""
|
45 |
-
#
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
end_timestamp = convert_date_components_to_timestamp(
|
52 |
-
int(end_year),
|
53 |
-
int(end_month)
|
54 |
-
)
|
55 |
-
|
56 |
-
# Convert the DataFrame's date column to timestamps for comparison
|
57 |
-
date_timestamps = pd.to_datetime(df[date_column]).apply(lambda x: int(x.timestamp()))
|
58 |
-
|
59 |
-
# Filter the DataFrame
|
60 |
-
return df[
|
61 |
-
(date_timestamps >= start_timestamp) &
|
62 |
-
(date_timestamps <= end_timestamp)
|
63 |
-
]
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
|
67 |
def filter(df, language_list, parameters, input_price, output_price, multimodal,
|
68 |
-
context, open_weight,
|
69 |
-
|
|
|
70 |
|
|
|
71 |
if not df.empty: # Check if df is non-empty
|
72 |
df = df[df[tc.LANGS].apply(lambda x: all(lang in x for lang in language_list))]
|
73 |
|
74 |
if not df.empty:
|
75 |
-
# Split dataframe by Open Weight
|
76 |
-
open_weight_true = df[
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
#
|
80 |
-
|
|
|
81 |
|
82 |
# Filter only the open weight models based on parameters
|
83 |
if not open_weight_true.empty:
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
else:
|
89 |
-
filtered_open = open_weight_true[
|
90 |
-
(open_weight_true[tc.PARAMS] >= parameters[0]) &
|
91 |
-
(open_weight_true[tc.PARAMS] <= parameters[1])
|
92 |
-
]
|
93 |
|
94 |
# Combine filtered open weight models with unfiltered commercial models
|
95 |
df = pd.concat([filtered_open, open_weight_false])
|
@@ -125,18 +140,6 @@ def filter(df, language_list, parameters, input_price, output_price, multimodal,
|
|
125 |
if not df.empty: # Check if df is non-empty
|
126 |
df = df[df[tc.LICENSE_NAME].apply(lambda x: any(lic in x for lic in license))]
|
127 |
|
128 |
-
# # Convert 'Release Date' to int temporarily
|
129 |
-
# if not df.empty: # Check if df is non-empty
|
130 |
-
# df[tc.TEMP_DATE] = pd.to_datetime(df[tc.TEMP_DATE]).astype(int) // 10**9 # Convert to seconds since epoch
|
131 |
-
|
132 |
-
# # Convert start and end to int (seconds since epoch)
|
133 |
-
# start = int(pd.to_datetime(start).timestamp())
|
134 |
-
# end = int(pd.to_datetime(end).timestamp())
|
135 |
-
|
136 |
-
# # Filter based on the converted 'Release Date'
|
137 |
-
# if not df.empty: # Check if df is non-empty
|
138 |
-
# df = df[(df[tc.TEMP_DATE] >= start) & (df[tc.TEMP_DATE] <= end)]
|
139 |
-
|
140 |
df = filter_by_date(df, start_year, start_month, end_year, end_month, tc.TEMP_DATE)
|
141 |
|
142 |
df = filter_cols(df)
|
|
|
2 |
|
3 |
import pandas as pd
|
4 |
import assets.text_content as tc
|
5 |
+
import calendar
|
6 |
+
from typing import Union, List
|
7 |
+
from datetime import datetime
|
8 |
+
|
9 |
+
current_year = str(datetime.now().year)
|
10 |
|
11 |
def filter_cols(df):
|
12 |
|
|
|
24 |
|
25 |
return df
|
26 |
|
27 |
+
|
28 |
def convert_date_components_to_timestamp(year: str, month: str) -> int:
|
29 |
"""Convert year and month strings to timestamp."""
|
30 |
# Create a datetime object for the first day of the month
|
|
|
32 |
return int(pd.to_datetime(date_str).timestamp())
|
33 |
|
34 |
def filter_by_date(df: pd.DataFrame,
|
35 |
+
start_year, start_month,
|
36 |
+
end_year, end_month,
|
37 |
+
date_column: str = tc.RELEASE_DATE) -> pd.DataFrame:
|
|
|
|
|
38 |
"""
|
39 |
Filter DataFrame by date range using separate year and month components.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
"""
|
41 |
+
# All lists are passed at once, so set default values here instead of passing them in args- Overwritten by empty lists
|
42 |
+
if not start_year:
|
43 |
+
start_year = tc.START_YEAR
|
44 |
+
if not end_year:
|
45 |
+
end_year = current_year
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
if not start_month:
|
48 |
+
start_month = "January"
|
49 |
+
if not end_month:
|
50 |
+
end_month = "December"
|
51 |
+
|
52 |
+
try:
|
53 |
+
# Convert string inputs to integers for date creation
|
54 |
+
start_timestamp = convert_date_components_to_timestamp(
|
55 |
+
int(start_year),
|
56 |
+
int(tc.MONTH_MAP[start_month])
|
57 |
+
)
|
58 |
+
|
59 |
+
end_timestamp = convert_date_components_to_timestamp(
|
60 |
+
int(end_year),
|
61 |
+
int(tc.MONTH_MAP[end_month])
|
62 |
+
)
|
63 |
+
|
64 |
+
# Convert the DataFrame's date column to timestamps for comparison
|
65 |
+
date_timestamps = pd.to_datetime(df[date_column]).apply(lambda x: int(x.timestamp()))
|
66 |
+
|
67 |
+
# Filter the DataFrame
|
68 |
+
return df[
|
69 |
+
(date_timestamps >= start_timestamp) &
|
70 |
+
(date_timestamps <= end_timestamp)
|
71 |
+
]
|
72 |
+
except (ValueError, TypeError) as e:
|
73 |
+
print(f"Error processing dates: {e}")
|
74 |
+
return df # Return unfiltered DataFrame if there's an error
|
75 |
|
76 |
|
77 |
def filter(df, language_list, parameters, input_price, output_price, multimodal,
|
78 |
+
context, open_weight,
|
79 |
+
start_year, start_month, end_year, end_month,
|
80 |
+
license ):
|
81 |
|
82 |
+
|
83 |
if not df.empty: # Check if df is non-empty
|
84 |
df = df[df[tc.LANGS].apply(lambda x: all(lang in x for lang in language_list))]
|
85 |
|
86 |
if not df.empty:
|
87 |
+
# Split dataframe by Open Weight, ensuring mutual exclusivity
|
88 |
+
open_weight_true = df[
|
89 |
+
(df[tc.OPEN_WEIGHT] == True) &
|
90 |
+
(~df[tc.PARAMS].isna())
|
91 |
+
]
|
92 |
+
open_weight_false = df[
|
93 |
+
(df[tc.OPEN_WEIGHT] == False) |
|
94 |
+
(df[tc.PARAMS].isna()) |
|
95 |
+
(~df.index.isin(open_weight_true.index)) # Catch any remaining rows
|
96 |
+
]
|
97 |
|
98 |
+
# Verify no overlap and no data loss
|
99 |
+
assert len(df) == len(open_weight_true) + len(open_weight_false), "Data loss detected"
|
100 |
+
assert len(set(open_weight_true.index) & set(open_weight_false.index)) == 0, "Duplicate entries detected"
|
101 |
|
102 |
# Filter only the open weight models based on parameters
|
103 |
if not open_weight_true.empty:
|
104 |
+
filtered_open = open_weight_true[
|
105 |
+
(open_weight_true[tc.PARAMS] >= parameters[0]) &
|
106 |
+
(open_weight_true[tc.PARAMS] <= parameters[1])
|
107 |
+
]
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
# Combine filtered open weight models with unfiltered commercial models
|
110 |
df = pd.concat([filtered_open, open_weight_false])
|
|
|
140 |
if not df.empty: # Check if df is non-empty
|
141 |
df = df[df[tc.LICENSE_NAME].apply(lambda x: any(lic in x for lic in license))]
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
df = filter_by_date(df, start_year, start_month, end_year, end_month, tc.TEMP_DATE)
|
144 |
|
145 |
df = filter_cols(df)
|
test.py
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
import calendar
|
2 |
-
import datetime
|
3 |
-
|
4 |
-
today = datetime.date.today()
|
5 |
-
|
6 |
-
year = today.year
|
7 |
-
|
8 |
-
print(year)
|
9 |
-
|
10 |
-
print(list(calendar.month_name[1:]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|