Spaces:
Runtime error
Runtime error
# This code is based on https://github.com/openai/guided-diffusion | |
""" | |
This code started out as a PyTorch port of Ho et al's diffusion models: | |
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py | |
Docstrings have been added, as well as DDIM sampling and a new collection of beta schedules. | |
""" | |
import enum | |
import math | |
import numpy as np | |
import torch | |
import torch as th | |
from copy import deepcopy | |
from motion.diffusion.nn import sum_flat | |
from motion.dataset.recover_smr import * | |
from SMPLX.rotation_conversions import rotation_6d_to_matrix, matrix_to_axis_angle | |
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1' | |
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps, scale_betas=1.): | |
""" | |
Get a pre-defined beta schedule for the given name. | |
The beta schedule library consists of beta schedules which remain similar | |
in the limit of num_diffusion_timesteps. | |
Beta schedules may be added, but should not be removed or changed once | |
they are committed to maintain backwards compatibility. | |
""" | |
if schedule_name == "linear": | |
# Linear schedule from Ho et al, extended to work for any number of | |
# diffusion steps. | |
scale = scale_betas * 1000 / num_diffusion_timesteps | |
beta_start = scale * 0.0001 | |
beta_end = scale * 0.02 | |
return np.linspace( | |
beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64 | |
) | |
elif schedule_name == "cosine": | |
return betas_for_alpha_bar( | |
num_diffusion_timesteps, | |
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, ### t=0->1, t=1->0, t=2->1, t=3->0, 近似于 0,1 交替输入 | |
) | |
else: | |
raise NotImplementedError(f"unknown beta schedule: {schedule_name}") | |
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): | |
""" | |
Create a beta schedule that discretizes the given alpha_t_bar function, | |
which defines the cumulative product of (1-beta) over time from t = [0,1]. | |
:param num_diffusion_timesteps: the number of betas to produce. | |
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and | |
produces the cumulative product of (1-beta) up to that | |
part of the diffusion process. | |
:param max_beta: the maximum beta to use; use values lower than 1 to | |
prevent singularities. | |
""" | |
betas = [] | |
for i in range(num_diffusion_timesteps): | |
t1 = i / num_diffusion_timesteps | |
t2 = (i + 1) / num_diffusion_timesteps | |
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | |
return np.array(betas) | |
class ModelMeanType(enum.Enum): | |
""" | |
Which type of output the model predicts. | |
""" | |
PREVIOUS_X = enum.auto() # the model predicts x_{t-1} | |
START_X = enum.auto() # the model predicts x_0 | |
EPSILON = enum.auto() # the model predicts epsilon | |
class ModelVarType(enum.Enum): | |
""" | |
What is used as the model's output variance. | |
The LEARNED_RANGE option has been added to allow the model to predict | |
values between FIXED_SMALL and FIXED_LARGE, making its job easier. | |
""" | |
LEARNED = enum.auto() | |
FIXED_SMALL = enum.auto() | |
FIXED_LARGE = enum.auto() | |
LEARNED_RANGE = enum.auto() | |
class LossType(enum.Enum): | |
MSE = enum.auto() # use raw MSE loss (and KL when learning variances) | |
RESCALED_MSE = ( | |
enum.auto() | |
) # use raw MSE loss (with RESCALED_KL when learning variances) | |
KL = enum.auto() # use the variational lower-bound | |
RESCALED_KL = enum.auto() # like KL, but rescale to estimate the full VLB | |
def is_vb(self): | |
return self == LossType.KL or self == LossType.RESCALED_KL | |
class GaussianDiffusion: | |
""" | |
Utilities for training and sampling diffusion models. | |
Ported directly from here, and then adapted over time to further experimentation. | |
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42 | |
:param betas: a 1-D numpy array of betas for each diffusion timestep, | |
starting at T and going to 1. | |
:param model_mean_type: a ModelMeanType determining what the model outputs. | |
:param model_var_type: a ModelVarType determining how variance is output. | |
:param loss_type: a LossType determining the loss function to use. | |
:param rescale_timesteps: if True, pass floating point timesteps into the | |
model so that they are always scaled like in the | |
original paper (0 to 1000). | |
""" | |
def __init__( | |
self, | |
*, | |
betas, | |
model_mean_type, | |
model_var_type, | |
loss_type, | |
rescale_timesteps=False, | |
rep="t2m" | |
): | |
self.model_mean_type = model_mean_type | |
self.model_var_type = model_var_type | |
self.loss_type = loss_type | |
self.rescale_timesteps = rescale_timesteps | |
self.rep = rep | |
# Use float64 for accuracy. | |
betas = np.array(betas, dtype=np.float64) | |
self.betas = betas | |
assert len(betas.shape) == 1, "betas must be 1-D" | |
assert (betas > 0).all() and (betas <= 1).all() | |
self.num_timesteps = int(betas.shape[0]) | |
alphas = 1.0 - betas | |
self.alphas_cumprod = np.cumprod(alphas, axis=0) #### 累乘变成 alpha_bar | |
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) ### append 是合并, 意思是倒序排列,但是去掉把第一个换成 1 | |
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) #### 正序排列,但是把第一个换成 0 并插到最后 | |
assert self.alphas_cumprod_prev.shape == (self.num_timesteps,) | |
# calculations for diffusion q(x_t | x_{t-1}) and others | |
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) | |
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) | |
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod) | |
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) | |
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1) | |
# calculations for posterior q(x_{t-1} | x_t, x_0) | |
self.posterior_variance = ( ###### 计算 \mu(xt, x0) 的一部分 | |
betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) | |
) | |
# log calculation clipped because the posterior variance is 0 at the | |
# beginning of the diffusion chain. | |
self.posterior_log_variance_clipped = np.log( | |
np.append(self.posterior_variance[1], self.posterior_variance[1:]) | |
) | |
self.posterior_mean_coef1 = ( | |
betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) | |
) | |
self.posterior_mean_coef2 = ( | |
(1.0 - self.alphas_cumprod_prev) | |
* np.sqrt(alphas) | |
/ (1.0 - self.alphas_cumprod) | |
) | |
self.l2_loss = lambda a, b: (a - b) ** 2 # th.nn.MSELoss(reduction='none') # must be None for handling mask later on. | |
def masked_l2(self, a, b, mask, addition_rotate_mask): | |
loss = self.l2_loss(a, b) #### [bs, 263, 1, num_frames] | |
loss = sum_flat(loss * mask.float() * addition_rotate_mask.float()) # gives \sigma_euclidean over unmasked elements ### [Batch] | |
n_entries = a.shape[1] * a.shape[2] ##### BS * 263 * 1 * num_frame -> 263 | |
non_zero_elements = sum_flat(mask) * n_entries | |
mse_loss_val = loss / non_zero_elements | |
return mse_loss_val | |
def q_mean_variance(self, x_start, t): | |
""" | |
Get the distribution q(x_t | x_0). | |
:param x_start: the [N x C x ...] tensor of noiseless inputs. | |
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
:return: A tuple (mean, variance, log_variance), all of x_start's shape. | |
""" | |
mean = ( | |
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
) | |
variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) | |
log_variance = _extract_into_tensor( | |
self.log_one_minus_alphas_cumprod, t, x_start.shape | |
) | |
return mean, variance, log_variance | |
def q_sample(self, x_start, t, noise=None, model_kwargs=None): | |
""" | |
Diffuse the dataset for a given number of diffusion steps. | |
In other words, sample from q(x_t | x_0). | |
:param x_start: the initial dataset batch. | |
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
:param noise: if specified, the split-out normal noise. | |
:return: A noisy version of x_start. | |
""" | |
if noise is None: | |
noise = th.randn_like(x_start) | |
assert noise.shape == x_start.shape | |
return ( ######### 前向传播 xt = self.sqrt_alphas_cumprod[t] * x0 + self.sqrt_one_minus_alphas_cumprod[t] * \epsilon | |
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
+ _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) | |
* noise | |
) | |
def q_posterior_mean_variance(self, x_start, x_t, t): | |
""" | |
Compute the mean and variance of the diffusion posterior: | |
q(x_{t-1} | x_t, x_0) | |
""" | |
assert x_start.shape == x_t.shape | |
posterior_mean = ( | |
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start | |
+ _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t | |
) | |
posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape) | |
posterior_log_variance_clipped = _extract_into_tensor( | |
self.posterior_log_variance_clipped, t, x_t.shape | |
) | |
assert ( | |
posterior_mean.shape[0] | |
== posterior_variance.shape[0] | |
== posterior_log_variance_clipped.shape[0] | |
== x_start.shape[0] | |
) | |
return posterior_mean, posterior_variance, posterior_log_variance_clipped | |
def p_mean_variance( | |
self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None | |
): | |
if model_kwargs is None: | |
model_kwargs = {} | |
B, C = x.shape[:2] | |
assert t.shape == (B,) | |
model_output = model(x, self._scale_timesteps(t), **model_kwargs) | |
model_output = model_output["output"] | |
x_t = x | |
if 'inpainting_mask' in model_kwargs['y'].keys() and 'inpainted_motion' in model_kwargs['y'].keys(): | |
inpainting_mask, inpainted_motion = model_kwargs['y']['inpainting_mask'], model_kwargs['y']['inpainted_motion'] | |
assert self.model_mean_type == ModelMeanType.START_X, 'This feature supports only X_start pred for mow!' | |
assert model_output.shape == inpainting_mask.shape == inpainted_motion.shape | |
ones = torch.ones_like(inpainting_mask, dtype=torch.float, device=inpainting_mask.device) | |
inpainting_mask = ones * inpainting_mask | |
model_output = (model_output * (1 - inpainting_mask)) + (inpainted_motion * inpainting_mask) | |
if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]: | |
assert model_output.shape == (B, C * 2, *x.shape[2:]) | |
model_output, model_var_values = th.split(model_output, C, dim=1) | |
if self.model_var_type == ModelVarType.LEARNED: | |
model_log_variance = model_var_values | |
model_variance = th.exp(model_log_variance) | |
else: | |
min_log = _extract_into_tensor( | |
self.posterior_log_variance_clipped, t, x.shape | |
) | |
max_log = _extract_into_tensor(np.log(self.betas), t, x.shape) | |
# The model_var_values is [-1, 1] for [min_var, max_var]. | |
frac = (model_var_values + 1) / 2 | |
model_log_variance = frac * max_log + (1 - frac) * min_log | |
model_variance = th.exp(model_log_variance) | |
else: | |
model_variance, model_log_variance = { | |
ModelVarType.FIXED_LARGE: ( | |
np.append(self.posterior_variance[1], self.betas[1:]), | |
np.log(np.append(self.posterior_variance[1], self.betas[1:])), | |
), | |
ModelVarType.FIXED_SMALL: ( ############ USE IT | |
self.posterior_variance, | |
self.posterior_log_variance_clipped, | |
), | |
}[self.model_var_type] | |
model_variance = _extract_into_tensor(model_variance, t, x_t.shape) | |
model_log_variance = _extract_into_tensor(model_log_variance, t, x_t.shape) | |
def process_xstart(x): | |
if denoised_fn is not None: | |
x = denoised_fn(x) | |
if clip_denoised: | |
# print('clip_denoised', clip_denoised) | |
return x.clamp(-1, 1) | |
return x | |
if self.model_mean_type == ModelMeanType.PREVIOUS_X: | |
pred_xstart = process_xstart( | |
self._predict_xstart_from_xprev(x_t=x_t, t=t, xprev=model_output) | |
) | |
model_mean = model_output | |
elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]: # THIS IS US! | |
if self.model_mean_type == ModelMeanType.START_X: | |
pred_xstart = process_xstart(model_output) | |
else: | |
pred_xstart = process_xstart(self._predict_xstart_from_eps(x_t=x_t, t=t, eps=model_output)) | |
model_mean, _, _ = self.q_posterior_mean_variance(x_start=pred_xstart, x_t=x_t, t=t) | |
else: | |
raise NotImplementedError(self.model_mean_type) | |
assert (model_mean.shape == model_log_variance.shape == pred_xstart.shape == x_t.shape) | |
return { | |
"mean": model_mean, | |
"variance": model_variance, | |
"log_variance": model_log_variance, | |
"pred_xstart": pred_xstart, | |
} | |
def _predict_xstart_from_eps(self, x_t, t, eps): | |
assert x_t.shape == eps.shape | |
return ( | |
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t | |
- _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps | |
) | |
def _predict_xstart_from_xprev(self, x_t, t, xprev): | |
assert x_t.shape == xprev.shape | |
return ( # (xprev - coef2*x_t) / coef1 | |
_extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev | |
- _extract_into_tensor( | |
self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape | |
) | |
* x_t | |
) | |
def _scale_timesteps(self, t): | |
if self.rescale_timesteps: | |
return t.float() * (1000.0 / self.num_timesteps) | |
return t | |
def p_sample( | |
self, | |
model, | |
x, | |
t, | |
clip_denoised=True, | |
denoised_fn=None, | |
cond_fn=None, | |
model_kwargs=None, | |
const_noise=False, | |
): | |
""" | |
Sample x_{t-1} from the model at the given timestep. | |
:param model: the model to sample from. | |
:param x: the current tensor at x_{t-1}. | |
:param t: the value of t, starting at 0 for the first diffusion step. | |
:param clip_denoised: if True, clip the x_start prediction to [-1, 1]. | |
:param denoised_fn: if not None, a function which applies to the | |
x_start prediction before it is used to sample. | |
:param cond_fn: if not None, this is a gradient function that acts | |
similarly to the model. | |
:param model_kwargs: if not None, a dict of extra keyword arguments to | |
pass to the model. This can be used for conditioning. | |
:return: a dict containing the following keys: | |
- 'sample': a random sample from the model. | |
- 'pred_xstart': a prediction of x_0. | |
""" | |
out = self.p_mean_variance( | |
model, | |
x, #### x 列表 | |
t, | |
clip_denoised=clip_denoised, | |
denoised_fn=denoised_fn, | |
model_kwargs=model_kwargs, | |
) | |
noise = th.randn_like(out["mean"]) | |
if const_noise: | |
noise = noise[[0]].repeat(out["mean"].shape[0], 1, 1, 1) | |
nonzero_mask = ((t != 0).float().view(-1, *([1] * (len(out["mean"].shape) - 1)))) # no noise when t == 0 | |
sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise ## \mu + nonzero_mask * \std * noise | |
return {"sample": sample, "pred_xstart": out["pred_xstart"]} | |
def p_sample_loop( | |
self, | |
model, | |
shape, | |
noise=None, | |
clip_denoised=True, | |
denoised_fn=None, | |
cond_fn=None, | |
model_kwargs=None, | |
device=None, | |
progress=False, | |
skip_timesteps=0, | |
init_image=None, | |
randomize_class=False, | |
cond_fn_with_grad=False, | |
dump_steps=None, | |
const_noise=False, | |
unfolding_handshake=0, # 0 means no unfolding | |
eval_mask=None | |
): | |
""" | |
Generate samples from the model. | |
:param model: the model module. | |
:param shape: the shape of the samples, (N, C, H, W). | |
:param noise: if specified, the noise from the encoder to sample. | |
Should be of the same shape as `shape`. | |
:param clip_denoised: if True, clip x_start predictions to [-1, 1]. | |
:param denoised_fn: if not None, a function which applies to the | |
x_start prediction before it is used to sample. | |
:param cond_fn: if not None, this is a gradient function that acts | |
similarly to the model. | |
:param model_kwargs: if not None, a dict of extra keyword arguments to | |
pass to the model. This can be used for conditioning. | |
:param device: if specified, the device to create the samples on. | |
If not specified, use a model parameter's device. | |
:param progress: if True, show a tqdm progress bar. | |
:param const_noise: If True, will noise all samples with the same noise throughout sampling | |
:return: a non-differentiable batch of samples. | |
""" | |
final = None | |
if dump_steps is not None: | |
dump = [] | |
for i, sample in enumerate(self.p_sample_loop_progressive( | |
model, | |
shape, | |
noise=noise, | |
clip_denoised=clip_denoised, | |
denoised_fn=denoised_fn, | |
cond_fn=cond_fn, | |
model_kwargs=model_kwargs, | |
device=device, | |
progress=progress, | |
skip_timesteps=skip_timesteps, | |
init_image=init_image, | |
randomize_class=randomize_class, | |
cond_fn_with_grad=cond_fn_with_grad, | |
const_noise=const_noise, | |
eval_mask=eval_mask | |
)): | |
# unfolding | |
if unfolding_handshake > 0: | |
''' | |
first take 点这里 | |
''' | |
alpha = torch.arange(0, unfolding_handshake, 1, device=sample['sample'].device) / unfolding_handshake | |
for sample_i, len in zip(range(1, sample['sample'].shape[0]), model_kwargs['y']['lengths']): | |
_suffix = sample['sample'][sample_i - 1, :, :, -unfolding_handshake + len:len] | |
_prefix = sample['sample'][sample_i, :, :, :unfolding_handshake] | |
try: | |
_blend = (_suffix * (1 - alpha) + _prefix * alpha) | |
except(RuntimeError): | |
print("Error") | |
sample['sample'][sample_i - 1, :, :, -unfolding_handshake + len:len] = _blend #### 混合操作,保证下一帧的 left = 这一帧的 right, 这样 double take 的时候才能直接用 right 覆盖 left | |
sample['sample'][sample_i, :, :, :unfolding_handshake] = _blend | |
if dump_steps is not None and i in dump_steps: | |
dump.append(deepcopy(sample["sample"])) | |
final = sample | |
if dump_steps is not None: | |
return dump | |
res = {"output":final["sample"]} | |
return res | |
def p_sample_loop_progressive( | |
self, | |
model, | |
shape, | |
noise=None, | |
clip_denoised=True, | |
denoised_fn=None, | |
cond_fn=None, | |
model_kwargs=None, | |
device=None, | |
progress=False, | |
skip_timesteps=0, | |
init_image=None, | |
randomize_class=False, | |
cond_fn_with_grad=False, | |
const_noise=False, | |
eval_mask=None | |
): | |
""" | |
Generate samples from the model and yield intermediate samples from | |
each timestep of diffusion. | |
Arguments are the same as p_sample_loop(). | |
Returns a generator over dicts, where each dict is the return value of | |
p_sample(). | |
""" | |
if device is None: | |
device = next(model.parameters()).device | |
assert isinstance(shape, (tuple, list)) | |
if noise is not None: | |
img = noise | |
else: | |
img = th.randn(*shape, device=device) | |
if skip_timesteps and init_image is None: | |
init_image = th.zeros_like(img) | |
indices = list(range(self.num_timesteps - skip_timesteps))[::-1] #### [999, 998, ... 0] | |
if init_image is not None: | |
my_t = th.ones([shape[0]], device=device, dtype=th.long) * indices[0] | |
img = self.q_sample(init_image, my_t, img, model_kwargs=model_kwargs) | |
''' | |
把 eval_mask 放在这里相当于初始化时若干帧的结果存在问题 | |
如果把 eval_mask 放在循环中, 就相当于推理过程中指定位置一直在生成不同的错误帧 | |
''' | |
if eval_mask is not None and img.shape[0] != 1: | |
rand_img = torch.randperm(img.shape[0]) | |
rand_img = img[rand_img] | |
img = img * (1 - eval_mask) + rand_img * eval_mask | |
elif eval_mask is not None and img.shape[0] == 1: | |
rand_img = th.randn(*shape, device=device) | |
img = img * (1 - eval_mask) + rand_img * eval_mask | |
if progress: | |
# Lazy import so that we don't depend on tqdm. | |
from tqdm.auto import tqdm | |
indices = tqdm(indices) | |
for i in indices: | |
t = th.tensor([i] * shape[0], device=device) ### t = [999] | |
if randomize_class and 'y' in model_kwargs: | |
model_kwargs['y'] = th.randint(low=0, high=model.num_classes, | |
size=model_kwargs['y'].shape, | |
device=model_kwargs['y'].device) | |
with th.no_grad(): | |
sample_fn = self.p_sample | |
condition = deepcopy(model_kwargs) | |
out = sample_fn( | |
model, | |
img, | |
t, | |
clip_denoised=clip_denoised, | |
denoised_fn=denoised_fn, | |
cond_fn=cond_fn, | |
model_kwargs=condition, | |
const_noise=const_noise, | |
) | |
yield out | |
img = out["sample"] ##### 最开始是随机噪声,然后会得到 999 的输出,然后得到 998 的输出,最后一步是预测的 x0 | |
def training_losses(self, model, x_start, t, model_kwargs=None, noise=None): | |
""" | |
Compute training losses for a single timestep. | |
:param model: the model to evaluate loss on. | |
:param x_start: the [N x C x ...] tensor of inputs. 生成目标 x0 | |
:param t: a batch of timestep indices. | |
:param model_kwargs: if not None, a dict of extra keyword arguments to | |
pass to the model. This can be used for conditioning. | |
:param noise: if specified, the specific Gaussian noise to try to remove. | |
:return: a dict with the key "loss" containing a tensor of shape [N]. | |
Some mean or variance settings may also have other keys. | |
""" | |
mask = model_kwargs['y']['mask'] | |
if len(x_start.shape) == 3: | |
x_start = x_start.permute(0, 2, 1).unsqueeze(2) | |
elif len(x_start.shape) == 4: | |
x_start = x_start.permute(0, 2, 3, 1) | |
if self.rep == "smplx": | |
addition_rotate_mask = torch.ones_like(x_start) | |
# addition_rotate_mask = mask.repeat(1, x_start.shape[1], x_start.shape[2], 1) ### [bs, njoints, nfeats, nframes] | |
# speed = x_start[..., 1::] - x_start[..., :-1] #### [bs, njoints, nfeats, nframes-1] | |
# speed = speed.sum(dim=-1).sum(dim=-1) #### [bs, njoints] | |
# nosub = speed == 0 #### find joints that have no change between different frames and not calculate loss function | |
# addition_rotate_mask[nosub] = 0 | |
else: | |
addition_rotate_mask = torch.ones_like(x_start) | |
if noise is None: | |
noise = th.randn_like(x_start) | |
x_t = self.q_sample(x_start, t, noise=noise, model_kwargs=model_kwargs) ###### 前向传播 x0 到 xt | |
terms = {} | |
if self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE: #### 默认用 mse 损失 | |
model_output = model(x_t, self._scale_timesteps(t), **model_kwargs) #### mixup_res | |
model_output = model_output["output"] #### [bs, 263, 1, nframes] -> [nfrmaes, bs, 512] -> [bs, 263, 1, nframes] | |
if self.model_mean_type == ModelMeanType.START_X: | |
target = x_start | |
elif self.model_mean_type == ModelMeanType.EPSILON: | |
target = noise | |
elif self.model_mean_type == ModelMeanType.PREVIOUS_X: | |
target = self.q_posterior_mean_variance(x_start=x_start, x_t=x_t, t=t)[0] | |
assert model_output.shape == target.shape == x_start.shape | |
terms["rot_mse"] = self.masked_l2(target, model_output, mask, addition_rotate_mask=addition_rotate_mask) | |
terms["loss"] = terms["rot_mse"] | |
else: | |
raise NotImplementedError(self.loss_type) | |
return terms | |
def _extract_into_tensor(arr, timesteps, broadcast_shape): | |
""" | |
Extract values from a 1-D numpy array for a batch of indices. | |
:param arr: the 1-D numpy array. | |
:param timesteps: a tensor of indices into the array to extract. | |
:param broadcast_shape: a larger shape of K dimensions with the batch | |
dimension equal to the length of timesteps. | |
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. | |
""" | |
res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float() | |
while len(res.shape) < len(broadcast_shape): | |
res = res[..., None] | |
return res.expand(broadcast_shape) | |