SemanticBoost / motion /diffusion /gaussian_diffusion.py
kleinhe
init
c3d0293
# This code is based on https://github.com/openai/guided-diffusion
"""
This code started out as a PyTorch port of Ho et al's diffusion models:
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py
Docstrings have been added, as well as DDIM sampling and a new collection of beta schedules.
"""
import enum
import math
import numpy as np
import torch
import torch as th
from copy import deepcopy
from motion.diffusion.nn import sum_flat
from motion.dataset.recover_smr import *
from SMPLX.rotation_conversions import rotation_6d_to_matrix, matrix_to_axis_angle
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps, scale_betas=1.):
"""
Get a pre-defined beta schedule for the given name.
The beta schedule library consists of beta schedules which remain similar
in the limit of num_diffusion_timesteps.
Beta schedules may be added, but should not be removed or changed once
they are committed to maintain backwards compatibility.
"""
if schedule_name == "linear":
# Linear schedule from Ho et al, extended to work for any number of
# diffusion steps.
scale = scale_betas * 1000 / num_diffusion_timesteps
beta_start = scale * 0.0001
beta_end = scale * 0.02
return np.linspace(
beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64
)
elif schedule_name == "cosine":
return betas_for_alpha_bar(
num_diffusion_timesteps,
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, ### t=0->1, t=1->0, t=2->1, t=3->0, 近似于 0,1 交替输入
)
else:
raise NotImplementedError(f"unknown beta schedule: {schedule_name}")
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
"""
Create a beta schedule that discretizes the given alpha_t_bar function,
which defines the cumulative product of (1-beta) over time from t = [0,1].
:param num_diffusion_timesteps: the number of betas to produce.
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
produces the cumulative product of (1-beta) up to that
part of the diffusion process.
:param max_beta: the maximum beta to use; use values lower than 1 to
prevent singularities.
"""
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return np.array(betas)
class ModelMeanType(enum.Enum):
"""
Which type of output the model predicts.
"""
PREVIOUS_X = enum.auto() # the model predicts x_{t-1}
START_X = enum.auto() # the model predicts x_0
EPSILON = enum.auto() # the model predicts epsilon
class ModelVarType(enum.Enum):
"""
What is used as the model's output variance.
The LEARNED_RANGE option has been added to allow the model to predict
values between FIXED_SMALL and FIXED_LARGE, making its job easier.
"""
LEARNED = enum.auto()
FIXED_SMALL = enum.auto()
FIXED_LARGE = enum.auto()
LEARNED_RANGE = enum.auto()
class LossType(enum.Enum):
MSE = enum.auto() # use raw MSE loss (and KL when learning variances)
RESCALED_MSE = (
enum.auto()
) # use raw MSE loss (with RESCALED_KL when learning variances)
KL = enum.auto() # use the variational lower-bound
RESCALED_KL = enum.auto() # like KL, but rescale to estimate the full VLB
def is_vb(self):
return self == LossType.KL or self == LossType.RESCALED_KL
class GaussianDiffusion:
"""
Utilities for training and sampling diffusion models.
Ported directly from here, and then adapted over time to further experimentation.
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42
:param betas: a 1-D numpy array of betas for each diffusion timestep,
starting at T and going to 1.
:param model_mean_type: a ModelMeanType determining what the model outputs.
:param model_var_type: a ModelVarType determining how variance is output.
:param loss_type: a LossType determining the loss function to use.
:param rescale_timesteps: if True, pass floating point timesteps into the
model so that they are always scaled like in the
original paper (0 to 1000).
"""
def __init__(
self,
*,
betas,
model_mean_type,
model_var_type,
loss_type,
rescale_timesteps=False,
rep="t2m"
):
self.model_mean_type = model_mean_type
self.model_var_type = model_var_type
self.loss_type = loss_type
self.rescale_timesteps = rescale_timesteps
self.rep = rep
# Use float64 for accuracy.
betas = np.array(betas, dtype=np.float64)
self.betas = betas
assert len(betas.shape) == 1, "betas must be 1-D"
assert (betas > 0).all() and (betas <= 1).all()
self.num_timesteps = int(betas.shape[0])
alphas = 1.0 - betas
self.alphas_cumprod = np.cumprod(alphas, axis=0) #### 累乘变成 alpha_bar
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) ### append 是合并, 意思是倒序排列,但是去掉把第一个换成 1
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) #### 正序排列,但是把第一个换成 0 并插到最后
assert self.alphas_cumprod_prev.shape == (self.num_timesteps,)
# calculations for diffusion q(x_t | x_{t-1}) and others
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)
# calculations for posterior q(x_{t-1} | x_t, x_0)
self.posterior_variance = ( ###### 计算 \mu(xt, x0) 的一部分
betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
)
# log calculation clipped because the posterior variance is 0 at the
# beginning of the diffusion chain.
self.posterior_log_variance_clipped = np.log(
np.append(self.posterior_variance[1], self.posterior_variance[1:])
)
self.posterior_mean_coef1 = (
betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
)
self.posterior_mean_coef2 = (
(1.0 - self.alphas_cumprod_prev)
* np.sqrt(alphas)
/ (1.0 - self.alphas_cumprod)
)
self.l2_loss = lambda a, b: (a - b) ** 2 # th.nn.MSELoss(reduction='none') # must be None for handling mask later on.
def masked_l2(self, a, b, mask, addition_rotate_mask):
loss = self.l2_loss(a, b) #### [bs, 263, 1, num_frames]
loss = sum_flat(loss * mask.float() * addition_rotate_mask.float()) # gives \sigma_euclidean over unmasked elements ### [Batch]
n_entries = a.shape[1] * a.shape[2] ##### BS * 263 * 1 * num_frame -> 263
non_zero_elements = sum_flat(mask) * n_entries
mse_loss_val = loss / non_zero_elements
return mse_loss_val
def q_mean_variance(self, x_start, t):
"""
Get the distribution q(x_t | x_0).
:param x_start: the [N x C x ...] tensor of noiseless inputs.
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
"""
mean = (
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
)
variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
log_variance = _extract_into_tensor(
self.log_one_minus_alphas_cumprod, t, x_start.shape
)
return mean, variance, log_variance
def q_sample(self, x_start, t, noise=None, model_kwargs=None):
"""
Diffuse the dataset for a given number of diffusion steps.
In other words, sample from q(x_t | x_0).
:param x_start: the initial dataset batch.
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
:param noise: if specified, the split-out normal noise.
:return: A noisy version of x_start.
"""
if noise is None:
noise = th.randn_like(x_start)
assert noise.shape == x_start.shape
return ( ######### 前向传播 xt = self.sqrt_alphas_cumprod[t] * x0 + self.sqrt_one_minus_alphas_cumprod[t] * \epsilon
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
+ _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
* noise
)
def q_posterior_mean_variance(self, x_start, x_t, t):
"""
Compute the mean and variance of the diffusion posterior:
q(x_{t-1} | x_t, x_0)
"""
assert x_start.shape == x_t.shape
posterior_mean = (
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
+ _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = _extract_into_tensor(
self.posterior_log_variance_clipped, t, x_t.shape
)
assert (
posterior_mean.shape[0]
== posterior_variance.shape[0]
== posterior_log_variance_clipped.shape[0]
== x_start.shape[0]
)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(
self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None
):
if model_kwargs is None:
model_kwargs = {}
B, C = x.shape[:2]
assert t.shape == (B,)
model_output = model(x, self._scale_timesteps(t), **model_kwargs)
model_output = model_output["output"]
x_t = x
if 'inpainting_mask' in model_kwargs['y'].keys() and 'inpainted_motion' in model_kwargs['y'].keys():
inpainting_mask, inpainted_motion = model_kwargs['y']['inpainting_mask'], model_kwargs['y']['inpainted_motion']
assert self.model_mean_type == ModelMeanType.START_X, 'This feature supports only X_start pred for mow!'
assert model_output.shape == inpainting_mask.shape == inpainted_motion.shape
ones = torch.ones_like(inpainting_mask, dtype=torch.float, device=inpainting_mask.device)
inpainting_mask = ones * inpainting_mask
model_output = (model_output * (1 - inpainting_mask)) + (inpainted_motion * inpainting_mask)
if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]:
assert model_output.shape == (B, C * 2, *x.shape[2:])
model_output, model_var_values = th.split(model_output, C, dim=1)
if self.model_var_type == ModelVarType.LEARNED:
model_log_variance = model_var_values
model_variance = th.exp(model_log_variance)
else:
min_log = _extract_into_tensor(
self.posterior_log_variance_clipped, t, x.shape
)
max_log = _extract_into_tensor(np.log(self.betas), t, x.shape)
# The model_var_values is [-1, 1] for [min_var, max_var].
frac = (model_var_values + 1) / 2
model_log_variance = frac * max_log + (1 - frac) * min_log
model_variance = th.exp(model_log_variance)
else:
model_variance, model_log_variance = {
ModelVarType.FIXED_LARGE: (
np.append(self.posterior_variance[1], self.betas[1:]),
np.log(np.append(self.posterior_variance[1], self.betas[1:])),
),
ModelVarType.FIXED_SMALL: ( ############ USE IT
self.posterior_variance,
self.posterior_log_variance_clipped,
),
}[self.model_var_type]
model_variance = _extract_into_tensor(model_variance, t, x_t.shape)
model_log_variance = _extract_into_tensor(model_log_variance, t, x_t.shape)
def process_xstart(x):
if denoised_fn is not None:
x = denoised_fn(x)
if clip_denoised:
# print('clip_denoised', clip_denoised)
return x.clamp(-1, 1)
return x
if self.model_mean_type == ModelMeanType.PREVIOUS_X:
pred_xstart = process_xstart(
self._predict_xstart_from_xprev(x_t=x_t, t=t, xprev=model_output)
)
model_mean = model_output
elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]: # THIS IS US!
if self.model_mean_type == ModelMeanType.START_X:
pred_xstart = process_xstart(model_output)
else:
pred_xstart = process_xstart(self._predict_xstart_from_eps(x_t=x_t, t=t, eps=model_output))
model_mean, _, _ = self.q_posterior_mean_variance(x_start=pred_xstart, x_t=x_t, t=t)
else:
raise NotImplementedError(self.model_mean_type)
assert (model_mean.shape == model_log_variance.shape == pred_xstart.shape == x_t.shape)
return {
"mean": model_mean,
"variance": model_variance,
"log_variance": model_log_variance,
"pred_xstart": pred_xstart,
}
def _predict_xstart_from_eps(self, x_t, t, eps):
assert x_t.shape == eps.shape
return (
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
- _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
)
def _predict_xstart_from_xprev(self, x_t, t, xprev):
assert x_t.shape == xprev.shape
return ( # (xprev - coef2*x_t) / coef1
_extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev
- _extract_into_tensor(
self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape
)
* x_t
)
def _scale_timesteps(self, t):
if self.rescale_timesteps:
return t.float() * (1000.0 / self.num_timesteps)
return t
def p_sample(
self,
model,
x,
t,
clip_denoised=True,
denoised_fn=None,
cond_fn=None,
model_kwargs=None,
const_noise=False,
):
"""
Sample x_{t-1} from the model at the given timestep.
:param model: the model to sample from.
:param x: the current tensor at x_{t-1}.
:param t: the value of t, starting at 0 for the first diffusion step.
:param clip_denoised: if True, clip the x_start prediction to [-1, 1].
:param denoised_fn: if not None, a function which applies to the
x_start prediction before it is used to sample.
:param cond_fn: if not None, this is a gradient function that acts
similarly to the model.
:param model_kwargs: if not None, a dict of extra keyword arguments to
pass to the model. This can be used for conditioning.
:return: a dict containing the following keys:
- 'sample': a random sample from the model.
- 'pred_xstart': a prediction of x_0.
"""
out = self.p_mean_variance(
model,
x, #### x 列表
t,
clip_denoised=clip_denoised,
denoised_fn=denoised_fn,
model_kwargs=model_kwargs,
)
noise = th.randn_like(out["mean"])
if const_noise:
noise = noise[[0]].repeat(out["mean"].shape[0], 1, 1, 1)
nonzero_mask = ((t != 0).float().view(-1, *([1] * (len(out["mean"].shape) - 1)))) # no noise when t == 0
sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise ## \mu + nonzero_mask * \std * noise
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
def p_sample_loop(
self,
model,
shape,
noise=None,
clip_denoised=True,
denoised_fn=None,
cond_fn=None,
model_kwargs=None,
device=None,
progress=False,
skip_timesteps=0,
init_image=None,
randomize_class=False,
cond_fn_with_grad=False,
dump_steps=None,
const_noise=False,
unfolding_handshake=0, # 0 means no unfolding
eval_mask=None
):
"""
Generate samples from the model.
:param model: the model module.
:param shape: the shape of the samples, (N, C, H, W).
:param noise: if specified, the noise from the encoder to sample.
Should be of the same shape as `shape`.
:param clip_denoised: if True, clip x_start predictions to [-1, 1].
:param denoised_fn: if not None, a function which applies to the
x_start prediction before it is used to sample.
:param cond_fn: if not None, this is a gradient function that acts
similarly to the model.
:param model_kwargs: if not None, a dict of extra keyword arguments to
pass to the model. This can be used for conditioning.
:param device: if specified, the device to create the samples on.
If not specified, use a model parameter's device.
:param progress: if True, show a tqdm progress bar.
:param const_noise: If True, will noise all samples with the same noise throughout sampling
:return: a non-differentiable batch of samples.
"""
final = None
if dump_steps is not None:
dump = []
for i, sample in enumerate(self.p_sample_loop_progressive(
model,
shape,
noise=noise,
clip_denoised=clip_denoised,
denoised_fn=denoised_fn,
cond_fn=cond_fn,
model_kwargs=model_kwargs,
device=device,
progress=progress,
skip_timesteps=skip_timesteps,
init_image=init_image,
randomize_class=randomize_class,
cond_fn_with_grad=cond_fn_with_grad,
const_noise=const_noise,
eval_mask=eval_mask
)):
# unfolding
if unfolding_handshake > 0:
'''
first take 点这里
'''
alpha = torch.arange(0, unfolding_handshake, 1, device=sample['sample'].device) / unfolding_handshake
for sample_i, len in zip(range(1, sample['sample'].shape[0]), model_kwargs['y']['lengths']):
_suffix = sample['sample'][sample_i - 1, :, :, -unfolding_handshake + len:len]
_prefix = sample['sample'][sample_i, :, :, :unfolding_handshake]
try:
_blend = (_suffix * (1 - alpha) + _prefix * alpha)
except(RuntimeError):
print("Error")
sample['sample'][sample_i - 1, :, :, -unfolding_handshake + len:len] = _blend #### 混合操作,保证下一帧的 left = 这一帧的 right, 这样 double take 的时候才能直接用 right 覆盖 left
sample['sample'][sample_i, :, :, :unfolding_handshake] = _blend
if dump_steps is not None and i in dump_steps:
dump.append(deepcopy(sample["sample"]))
final = sample
if dump_steps is not None:
return dump
res = {"output":final["sample"]}
return res
def p_sample_loop_progressive(
self,
model,
shape,
noise=None,
clip_denoised=True,
denoised_fn=None,
cond_fn=None,
model_kwargs=None,
device=None,
progress=False,
skip_timesteps=0,
init_image=None,
randomize_class=False,
cond_fn_with_grad=False,
const_noise=False,
eval_mask=None
):
"""
Generate samples from the model and yield intermediate samples from
each timestep of diffusion.
Arguments are the same as p_sample_loop().
Returns a generator over dicts, where each dict is the return value of
p_sample().
"""
if device is None:
device = next(model.parameters()).device
assert isinstance(shape, (tuple, list))
if noise is not None:
img = noise
else:
img = th.randn(*shape, device=device)
if skip_timesteps and init_image is None:
init_image = th.zeros_like(img)
indices = list(range(self.num_timesteps - skip_timesteps))[::-1] #### [999, 998, ... 0]
if init_image is not None:
my_t = th.ones([shape[0]], device=device, dtype=th.long) * indices[0]
img = self.q_sample(init_image, my_t, img, model_kwargs=model_kwargs)
'''
把 eval_mask 放在这里相当于初始化时若干帧的结果存在问题
如果把 eval_mask 放在循环中, 就相当于推理过程中指定位置一直在生成不同的错误帧
'''
if eval_mask is not None and img.shape[0] != 1:
rand_img = torch.randperm(img.shape[0])
rand_img = img[rand_img]
img = img * (1 - eval_mask) + rand_img * eval_mask
elif eval_mask is not None and img.shape[0] == 1:
rand_img = th.randn(*shape, device=device)
img = img * (1 - eval_mask) + rand_img * eval_mask
if progress:
# Lazy import so that we don't depend on tqdm.
from tqdm.auto import tqdm
indices = tqdm(indices)
for i in indices:
t = th.tensor([i] * shape[0], device=device) ### t = [999]
if randomize_class and 'y' in model_kwargs:
model_kwargs['y'] = th.randint(low=0, high=model.num_classes,
size=model_kwargs['y'].shape,
device=model_kwargs['y'].device)
with th.no_grad():
sample_fn = self.p_sample
condition = deepcopy(model_kwargs)
out = sample_fn(
model,
img,
t,
clip_denoised=clip_denoised,
denoised_fn=denoised_fn,
cond_fn=cond_fn,
model_kwargs=condition,
const_noise=const_noise,
)
yield out
img = out["sample"] ##### 最开始是随机噪声,然后会得到 999 的输出,然后得到 998 的输出,最后一步是预测的 x0
def training_losses(self, model, x_start, t, model_kwargs=None, noise=None):
"""
Compute training losses for a single timestep.
:param model: the model to evaluate loss on.
:param x_start: the [N x C x ...] tensor of inputs. 生成目标 x0
:param t: a batch of timestep indices.
:param model_kwargs: if not None, a dict of extra keyword arguments to
pass to the model. This can be used for conditioning.
:param noise: if specified, the specific Gaussian noise to try to remove.
:return: a dict with the key "loss" containing a tensor of shape [N].
Some mean or variance settings may also have other keys.
"""
mask = model_kwargs['y']['mask']
if len(x_start.shape) == 3:
x_start = x_start.permute(0, 2, 1).unsqueeze(2)
elif len(x_start.shape) == 4:
x_start = x_start.permute(0, 2, 3, 1)
if self.rep == "smplx":
addition_rotate_mask = torch.ones_like(x_start)
# addition_rotate_mask = mask.repeat(1, x_start.shape[1], x_start.shape[2], 1) ### [bs, njoints, nfeats, nframes]
# speed = x_start[..., 1::] - x_start[..., :-1] #### [bs, njoints, nfeats, nframes-1]
# speed = speed.sum(dim=-1).sum(dim=-1) #### [bs, njoints]
# nosub = speed == 0 #### find joints that have no change between different frames and not calculate loss function
# addition_rotate_mask[nosub] = 0
else:
addition_rotate_mask = torch.ones_like(x_start)
if noise is None:
noise = th.randn_like(x_start)
x_t = self.q_sample(x_start, t, noise=noise, model_kwargs=model_kwargs) ###### 前向传播 x0 到 xt
terms = {}
if self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE: #### 默认用 mse 损失
model_output = model(x_t, self._scale_timesteps(t), **model_kwargs) #### mixup_res
model_output = model_output["output"] #### [bs, 263, 1, nframes] -> [nfrmaes, bs, 512] -> [bs, 263, 1, nframes]
if self.model_mean_type == ModelMeanType.START_X:
target = x_start
elif self.model_mean_type == ModelMeanType.EPSILON:
target = noise
elif self.model_mean_type == ModelMeanType.PREVIOUS_X:
target = self.q_posterior_mean_variance(x_start=x_start, x_t=x_t, t=t)[0]
assert model_output.shape == target.shape == x_start.shape
terms["rot_mse"] = self.masked_l2(target, model_output, mask, addition_rotate_mask=addition_rotate_mask)
terms["loss"] = terms["rot_mse"]
else:
raise NotImplementedError(self.loss_type)
return terms
def _extract_into_tensor(arr, timesteps, broadcast_shape):
"""
Extract values from a 1-D numpy array for a batch of indices.
:param arr: the 1-D numpy array.
:param timesteps: a tensor of indices into the array to extract.
:param broadcast_shape: a larger shape of K dimensions with the batch
dimension equal to the length of timesteps.
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
"""
res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
while len(res.shape) < len(broadcast_shape):
res = res[..., None]
return res.expand(broadcast_shape)