File size: 27,287 Bytes
c3d0293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
# This code is based on https://github.com/openai/guided-diffusion
"""
This code started out as a PyTorch port of Ho et al's diffusion models:
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py

Docstrings have been added, as well as DDIM sampling and a new collection of beta schedules.
"""

import enum
import math

import numpy as np
import torch
import torch as th
from copy import deepcopy
from motion.diffusion.nn import sum_flat
from motion.dataset.recover_smr import *
from SMPLX.rotation_conversions import rotation_6d_to_matrix, matrix_to_axis_angle
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'

def get_named_beta_schedule(schedule_name, num_diffusion_timesteps, scale_betas=1.):
    """
    Get a pre-defined beta schedule for the given name.

    The beta schedule library consists of beta schedules which remain similar
    in the limit of num_diffusion_timesteps.
    Beta schedules may be added, but should not be removed or changed once
    they are committed to maintain backwards compatibility.
    """
    if schedule_name == "linear":
        # Linear schedule from Ho et al, extended to work for any number of
        # diffusion steps.
        scale = scale_betas * 1000 / num_diffusion_timesteps
        beta_start = scale * 0.0001
        beta_end = scale * 0.02
        return np.linspace(
            beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64
        )
    elif schedule_name == "cosine":
        return betas_for_alpha_bar(
            num_diffusion_timesteps,
            lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,  ### t=0->1, t=1->0, t=2->1, t=3->0, 近似于 0,1 交替输入
        )
    else:
        raise NotImplementedError(f"unknown beta schedule: {schedule_name}")


def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
    """
    Create a beta schedule that discretizes the given alpha_t_bar function,
    which defines the cumulative product of (1-beta) over time from t = [0,1].

    :param num_diffusion_timesteps: the number of betas to produce.
    :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
                      produces the cumulative product of (1-beta) up to that
                      part of the diffusion process.
    :param max_beta: the maximum beta to use; use values lower than 1 to
                     prevent singularities.
    """
    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return np.array(betas)


class ModelMeanType(enum.Enum):
    """
    Which type of output the model predicts.
    """

    PREVIOUS_X = enum.auto()  # the model predicts x_{t-1}
    START_X = enum.auto()  # the model predicts x_0
    EPSILON = enum.auto()  # the model predicts epsilon


class ModelVarType(enum.Enum):
    """
    What is used as the model's output variance.

    The LEARNED_RANGE option has been added to allow the model to predict
    values between FIXED_SMALL and FIXED_LARGE, making its job easier.
    """

    LEARNED = enum.auto()
    FIXED_SMALL = enum.auto()
    FIXED_LARGE = enum.auto()
    LEARNED_RANGE = enum.auto()


class LossType(enum.Enum):
    MSE = enum.auto()  # use raw MSE loss (and KL when learning variances)
    RESCALED_MSE = (
        enum.auto()
    )  # use raw MSE loss (with RESCALED_KL when learning variances)
    KL = enum.auto()  # use the variational lower-bound
    RESCALED_KL = enum.auto()  # like KL, but rescale to estimate the full VLB

    def is_vb(self):
        return self == LossType.KL or self == LossType.RESCALED_KL

class GaussianDiffusion:
    """
    Utilities for training and sampling diffusion models.

    Ported directly from here, and then adapted over time to further experimentation.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42

    :param betas: a 1-D numpy array of betas for each diffusion timestep,
                  starting at T and going to 1.
    :param model_mean_type: a ModelMeanType determining what the model outputs.
    :param model_var_type: a ModelVarType determining how variance is output.
    :param loss_type: a LossType determining the loss function to use.
    :param rescale_timesteps: if True, pass floating point timesteps into the
                              model so that they are always scaled like in the
                              original paper (0 to 1000).
    """

    def __init__(
        self,
        *,
        betas,
        model_mean_type,
        model_var_type,
        loss_type,
        rescale_timesteps=False,
        rep="t2m"
    ):
        self.model_mean_type = model_mean_type
        self.model_var_type = model_var_type
        self.loss_type = loss_type
        self.rescale_timesteps = rescale_timesteps
        self.rep = rep

        # Use float64 for accuracy.
        betas = np.array(betas, dtype=np.float64)
        self.betas = betas
        assert len(betas.shape) == 1, "betas must be 1-D"
        assert (betas > 0).all() and (betas <= 1).all()

        self.num_timesteps = int(betas.shape[0])

        alphas = 1.0 - betas
        self.alphas_cumprod = np.cumprod(alphas, axis=0)        #### 累乘变成  alpha_bar
        self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])    ### append 是合并, 意思是倒序排列,但是去掉把第一个换成 1
        self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0)      #### 正序排列,但是把第一个换成 0 并插到最后
        assert self.alphas_cumprod_prev.shape == (self.num_timesteps,)

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
        self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
        self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
        self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
        self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)

        # calculations for posterior q(x_{t-1} | x_t, x_0)
        self.posterior_variance = (                             ###### 计算 \mu(xt, x0) 的一部分
            betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
        )
        # log calculation clipped because the posterior variance is 0 at the
        # beginning of the diffusion chain.
        self.posterior_log_variance_clipped = np.log(
            np.append(self.posterior_variance[1], self.posterior_variance[1:])
        )
        self.posterior_mean_coef1 = (
            betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
        )
        self.posterior_mean_coef2 = (
            (1.0 - self.alphas_cumprod_prev)
            * np.sqrt(alphas)
            / (1.0 - self.alphas_cumprod)
        )

        self.l2_loss = lambda a, b: (a - b) ** 2  # th.nn.MSELoss(reduction='none')  # must be None for handling mask later on.

    def masked_l2(self, a, b, mask, addition_rotate_mask):
        loss = self.l2_loss(a, b)              #### [bs, 263, 1, num_frames]
        loss = sum_flat(loss * mask.float() * addition_rotate_mask.float())  # gives \sigma_euclidean over unmasked elements   ### [Batch]

        n_entries = a.shape[1] * a.shape[2]     ##### BS * 263 * 1 * num_frame -> 263
        non_zero_elements = sum_flat(mask) * n_entries 
        mse_loss_val = loss / non_zero_elements
        return mse_loss_val
    
    def q_mean_variance(self, x_start, t):
        """
        Get the distribution q(x_t | x_0).

        :param x_start: the [N x C x ...] tensor of noiseless inputs.
        :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
        :return: A tuple (mean, variance, log_variance), all of x_start's shape.
        """
        mean = (
            _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
        )
        variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
        log_variance = _extract_into_tensor(
            self.log_one_minus_alphas_cumprod, t, x_start.shape
        )
        return mean, variance, log_variance

    def q_sample(self, x_start, t, noise=None, model_kwargs=None):
        """
        Diffuse the dataset for a given number of diffusion steps.

        In other words, sample from q(x_t | x_0).

        :param x_start: the initial dataset batch.
        :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
        :param noise: if specified, the split-out normal noise.
        :return: A noisy version of x_start.
        """
        if noise is None:
            noise = th.randn_like(x_start)
        assert noise.shape == x_start.shape

        return (            ######### 前向传播 xt = self.sqrt_alphas_cumprod[t] * x0 + self.sqrt_one_minus_alphas_cumprod[t] * \epsilon
            _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
            + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
            * noise
        )

    def q_posterior_mean_variance(self, x_start, x_t, t):
        """
        Compute the mean and variance of the diffusion posterior:

            q(x_{t-1} | x_t, x_0)

        """
        assert x_start.shape == x_t.shape
        posterior_mean = (
            _extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
            + _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
        )
        posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
        posterior_log_variance_clipped = _extract_into_tensor(
            self.posterior_log_variance_clipped, t, x_t.shape
        )
        assert (
            posterior_mean.shape[0]
            == posterior_variance.shape[0]
            == posterior_log_variance_clipped.shape[0]
            == x_start.shape[0]
        )
        return posterior_mean, posterior_variance, posterior_log_variance_clipped

    def p_mean_variance(
        self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None
    ):
        if model_kwargs is None:
            model_kwargs = {}

        B, C = x.shape[:2]
        assert t.shape == (B,)

        model_output = model(x, self._scale_timesteps(t), **model_kwargs) 

        model_output = model_output["output"]

        x_t = x

        if 'inpainting_mask' in model_kwargs['y'].keys() and 'inpainted_motion' in model_kwargs['y'].keys():
            inpainting_mask, inpainted_motion = model_kwargs['y']['inpainting_mask'], model_kwargs['y']['inpainted_motion']
            assert self.model_mean_type == ModelMeanType.START_X, 'This feature supports only X_start pred for mow!'
            assert model_output.shape == inpainting_mask.shape == inpainted_motion.shape

            ones = torch.ones_like(inpainting_mask, dtype=torch.float, device=inpainting_mask.device)
            inpainting_mask = ones * inpainting_mask
            model_output = (model_output * (1 - inpainting_mask)) + (inpainted_motion * inpainting_mask)

        if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]:
            assert model_output.shape == (B, C * 2, *x.shape[2:])
            model_output, model_var_values = th.split(model_output, C, dim=1)
            if self.model_var_type == ModelVarType.LEARNED:
                model_log_variance = model_var_values
                model_variance = th.exp(model_log_variance)
            else:
                min_log = _extract_into_tensor(
                    self.posterior_log_variance_clipped, t, x.shape
                )
                max_log = _extract_into_tensor(np.log(self.betas), t, x.shape)
                # The model_var_values is [-1, 1] for [min_var, max_var].
                frac = (model_var_values + 1) / 2
                model_log_variance = frac * max_log + (1 - frac) * min_log
                model_variance = th.exp(model_log_variance)
        else:
            model_variance, model_log_variance = {
                ModelVarType.FIXED_LARGE: (
                    np.append(self.posterior_variance[1], self.betas[1:]),
                    np.log(np.append(self.posterior_variance[1], self.betas[1:])),
                ),
                ModelVarType.FIXED_SMALL: (         ############ USE IT
                    self.posterior_variance,
                    self.posterior_log_variance_clipped,
                ),
            }[self.model_var_type]

            model_variance = _extract_into_tensor(model_variance, t, x_t.shape)
            model_log_variance = _extract_into_tensor(model_log_variance, t, x_t.shape)
        

        def process_xstart(x):
            if denoised_fn is not None:
                x = denoised_fn(x)
            if clip_denoised:
                # print('clip_denoised', clip_denoised)
                return x.clamp(-1, 1)
            return x

        if self.model_mean_type == ModelMeanType.PREVIOUS_X:
            pred_xstart = process_xstart(
                self._predict_xstart_from_xprev(x_t=x_t, t=t, xprev=model_output)
            )
            model_mean = model_output
        elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]:  # THIS IS US!

            if self.model_mean_type == ModelMeanType.START_X:
                pred_xstart = process_xstart(model_output)
            else:
                pred_xstart = process_xstart(self._predict_xstart_from_eps(x_t=x_t, t=t, eps=model_output))
            
            model_mean, _, _ = self.q_posterior_mean_variance(x_start=pred_xstart, x_t=x_t, t=t)                      
        else:
            raise NotImplementedError(self.model_mean_type)

        assert (model_mean.shape == model_log_variance.shape == pred_xstart.shape == x_t.shape)

        return {
            "mean": model_mean,
            "variance": model_variance,
            "log_variance": model_log_variance,
            "pred_xstart": pred_xstart,
        }

    def _predict_xstart_from_eps(self, x_t, t, eps):
        assert x_t.shape == eps.shape
        return (
            _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
            - _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
        )

    def _predict_xstart_from_xprev(self, x_t, t, xprev):
        assert x_t.shape == xprev.shape
        return (  # (xprev - coef2*x_t) / coef1
            _extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev
            - _extract_into_tensor(
                self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape
            )
            * x_t
        )

    def _scale_timesteps(self, t):
        if self.rescale_timesteps:
            return t.float() * (1000.0 / self.num_timesteps)
        return t

    def p_sample(
        self,
        model,
        x,
        t,
        clip_denoised=True,
        denoised_fn=None,
        cond_fn=None,
        model_kwargs=None,
        const_noise=False,
    ):
        """
        Sample x_{t-1} from the model at the given timestep.

        :param model: the model to sample from.
        :param x: the current tensor at x_{t-1}.
        :param t: the value of t, starting at 0 for the first diffusion step.
        :param clip_denoised: if True, clip the x_start prediction to [-1, 1].
        :param denoised_fn: if not None, a function which applies to the
            x_start prediction before it is used to sample.
        :param cond_fn: if not None, this is a gradient function that acts
                        similarly to the model.
        :param model_kwargs: if not None, a dict of extra keyword arguments to
            pass to the model. This can be used for conditioning.
        :return: a dict containing the following keys:
                 - 'sample': a random sample from the model.
                 - 'pred_xstart': a prediction of x_0.
        """
        out = self.p_mean_variance(
            model,
            x,          #### x 列表
            t,
            clip_denoised=clip_denoised,
            denoised_fn=denoised_fn,
            model_kwargs=model_kwargs,
        )

        noise = th.randn_like(out["mean"])
        if const_noise:
            noise = noise[[0]].repeat(out["mean"].shape[0], 1, 1, 1)
        nonzero_mask = ((t != 0).float().view(-1, *([1] * (len(out["mean"].shape) - 1))))  # no noise when t == 0
        sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise ## \mu + nonzero_mask * \std * noise
            
        return {"sample": sample, "pred_xstart": out["pred_xstart"]}

    def p_sample_loop(
        self,
        model,
        shape,
        noise=None,
        clip_denoised=True,
        denoised_fn=None,
        cond_fn=None,
        model_kwargs=None,
        device=None,
        progress=False,
        skip_timesteps=0,
        init_image=None,
        randomize_class=False,
        cond_fn_with_grad=False,
        dump_steps=None,
        const_noise=False,
        unfolding_handshake=0,  # 0 means no unfolding
        eval_mask=None

    ):
        """
        Generate samples from the model.

        :param model: the model module.
        :param shape: the shape of the samples, (N, C, H, W).
        :param noise: if specified, the noise from the encoder to sample.
                      Should be of the same shape as `shape`.
        :param clip_denoised: if True, clip x_start predictions to [-1, 1].
        :param denoised_fn: if not None, a function which applies to the
            x_start prediction before it is used to sample.
        :param cond_fn: if not None, this is a gradient function that acts
                        similarly to the model.
        :param model_kwargs: if not None, a dict of extra keyword arguments to
            pass to the model. This can be used for conditioning.
        :param device: if specified, the device to create the samples on.
                       If not specified, use a model parameter's device.
        :param progress: if True, show a tqdm progress bar.
        :param const_noise: If True, will noise all samples with the same noise throughout sampling
        :return: a non-differentiable batch of samples.
        """
        final = None
        if dump_steps is not None:
            dump = []

        for i, sample in enumerate(self.p_sample_loop_progressive(
            model,
            shape,
            noise=noise,
            clip_denoised=clip_denoised,
            denoised_fn=denoised_fn,
            cond_fn=cond_fn,
            model_kwargs=model_kwargs,
            device=device,
            progress=progress,
            skip_timesteps=skip_timesteps,
            init_image=init_image,
            randomize_class=randomize_class,
            cond_fn_with_grad=cond_fn_with_grad,
            const_noise=const_noise,
            eval_mask=eval_mask
        )):
            # unfolding
            if unfolding_handshake > 0:
                '''
                first take 点这里
                '''
                alpha = torch.arange(0, unfolding_handshake, 1, device=sample['sample'].device) / unfolding_handshake
                for sample_i, len in zip(range(1, sample['sample'].shape[0]), model_kwargs['y']['lengths']):
                    _suffix = sample['sample'][sample_i - 1, :, :, -unfolding_handshake + len:len]
                    _prefix = sample['sample'][sample_i, :, :, :unfolding_handshake]
                    try:
                        _blend = (_suffix * (1 - alpha) + _prefix * alpha)
                    except(RuntimeError):
                        print("Error")
                    sample['sample'][sample_i - 1, :, :, -unfolding_handshake + len:len] = _blend       #### 混合操作,保证下一帧的 left = 这一帧的 right, 这样 double take 的时候才能直接用 right 覆盖 left
                    sample['sample'][sample_i, :, :, :unfolding_handshake] = _blend

            if dump_steps is not None and i in dump_steps:
                dump.append(deepcopy(sample["sample"]))
            final = sample
        if dump_steps is not None:
            return dump

        res = {"output":final["sample"]}
        return res
        

    def p_sample_loop_progressive(
        self,
        model,
        shape,
        noise=None,
        clip_denoised=True,
        denoised_fn=None,
        cond_fn=None,
        model_kwargs=None,
        device=None,
        progress=False,
        skip_timesteps=0,
        init_image=None,
        randomize_class=False,
        cond_fn_with_grad=False,
        const_noise=False,
        eval_mask=None
    ):
        """
        Generate samples from the model and yield intermediate samples from
        each timestep of diffusion.

        Arguments are the same as p_sample_loop().
        Returns a generator over dicts, where each dict is the return value of
        p_sample().
        """
        if device is None:
            device = next(model.parameters()).device
        assert isinstance(shape, (tuple, list))
        
        if noise is not None:
            img = noise
        else:
            img = th.randn(*shape, device=device)   
     
        if skip_timesteps and init_image is None:
            init_image = th.zeros_like(img)

        indices = list(range(self.num_timesteps - skip_timesteps))[::-1]        #### [999, 998, ... 0]

        if init_image is not None:
            my_t = th.ones([shape[0]], device=device, dtype=th.long) * indices[0]
            img = self.q_sample(init_image, my_t, img, model_kwargs=model_kwargs)
            '''
            把 eval_mask 放在这里相当于初始化时若干帧的结果存在问题
            如果把 eval_mask 放在循环中, 就相当于推理过程中指定位置一直在生成不同的错误帧 
            '''
            if eval_mask is not None and img.shape[0] != 1:
                rand_img = torch.randperm(img.shape[0])
                rand_img = img[rand_img]
                img = img * (1 - eval_mask) + rand_img * eval_mask
            elif eval_mask is not None and img.shape[0] == 1:
                rand_img = th.randn(*shape, device=device)   
                img = img * (1 - eval_mask) + rand_img * eval_mask

        if progress:
            # Lazy import so that we don't depend on tqdm.
            from tqdm.auto import tqdm

            indices = tqdm(indices)

        for i in indices:
            t = th.tensor([i] * shape[0], device=device)        ### t = [999]
            if randomize_class and 'y' in model_kwargs:
                model_kwargs['y'] = th.randint(low=0, high=model.num_classes,
                                               size=model_kwargs['y'].shape,
                                               device=model_kwargs['y'].device)
            with th.no_grad():
                sample_fn = self.p_sample
                condition = deepcopy(model_kwargs)
                out = sample_fn(
                    model,
                    img,
                    t,
                    clip_denoised=clip_denoised,
                    denoised_fn=denoised_fn,
                    cond_fn=cond_fn,
                    model_kwargs=condition,
                    const_noise=const_noise,
                )

                yield out
                img = out["sample"]     ##### 最开始是随机噪声,然后会得到 999 的输出,然后得到 998 的输出,最后一步是预测的 x0

    def training_losses(self, model, x_start, t, model_kwargs=None, noise=None):
        """
        Compute training losses for a single timestep.

        :param model: the model to evaluate loss on.
        :param x_start: the [N x C x ...] tensor of inputs.  生成目标 x0
        :param t: a batch of timestep indices.
        :param model_kwargs: if not None, a dict of extra keyword arguments to
            pass to the model. This can be used for conditioning.
        :param noise: if specified, the specific Gaussian noise to try to remove.
        :return: a dict with the key "loss" containing a tensor of shape [N].
                 Some mean or variance settings may also have other keys.
        """


        mask = model_kwargs['y']['mask']

        if len(x_start.shape) == 3:
            x_start = x_start.permute(0, 2, 1).unsqueeze(2)
        elif len(x_start.shape) == 4:
            x_start = x_start.permute(0, 2, 3, 1)

        if self.rep == "smplx":
            addition_rotate_mask = torch.ones_like(x_start)
            # addition_rotate_mask = mask.repeat(1, x_start.shape[1], x_start.shape[2], 1)        ### [bs, njoints, nfeats, nframes]
            # speed = x_start[..., 1::] - x_start[..., :-1]     #### [bs, njoints, nfeats, nframes-1]
            # speed = speed.sum(dim=-1).sum(dim=-1)           #### [bs, njoints]
            # nosub = speed == 0                          #### find joints that have no change between different frames and not calculate loss function
            # addition_rotate_mask[nosub] = 0
        else:
            addition_rotate_mask = torch.ones_like(x_start)

        if noise is None:
            noise = th.randn_like(x_start)
        x_t = self.q_sample(x_start, t, noise=noise, model_kwargs=model_kwargs)    ###### 前向传播 x0 到 xt         

        terms = {}

        if self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE: #### 默认用 mse 损失

            model_output = model(x_t, self._scale_timesteps(t), **model_kwargs)     #### mixup_res

            model_output = model_output["output"]   #### [bs, 263, 1, nframes] -> [nfrmaes, bs, 512] -> [bs, 263, 1, nframes]
          
            if self.model_mean_type == ModelMeanType.START_X:
                target = x_start
            elif self.model_mean_type == ModelMeanType.EPSILON:
                target = noise
            elif self.model_mean_type == ModelMeanType.PREVIOUS_X:
                target = self.q_posterior_mean_variance(x_start=x_start, x_t=x_t, t=t)[0]

            assert model_output.shape == target.shape == x_start.shape 

            terms["rot_mse"] = self.masked_l2(target, model_output, mask, addition_rotate_mask=addition_rotate_mask) 

            terms["loss"] = terms["rot_mse"]
        else:
            raise NotImplementedError(self.loss_type)

        return terms


def _extract_into_tensor(arr, timesteps, broadcast_shape):
    """
    Extract values from a 1-D numpy array for a batch of indices.

    :param arr: the 1-D numpy array.
    :param timesteps: a tensor of indices into the array to extract.
    :param broadcast_shape: a larger shape of K dimensions with the batch
                            dimension equal to the length of timesteps.
    :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
    """

    res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
    while len(res.shape) < len(broadcast_shape):
        res = res[..., None]
    return res.expand(broadcast_shape)