Spaces:
Runtime error
Runtime error
File size: 27,287 Bytes
c3d0293 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
# This code is based on https://github.com/openai/guided-diffusion
"""
This code started out as a PyTorch port of Ho et al's diffusion models:
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py
Docstrings have been added, as well as DDIM sampling and a new collection of beta schedules.
"""
import enum
import math
import numpy as np
import torch
import torch as th
from copy import deepcopy
from motion.diffusion.nn import sum_flat
from motion.dataset.recover_smr import *
from SMPLX.rotation_conversions import rotation_6d_to_matrix, matrix_to_axis_angle
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps, scale_betas=1.):
"""
Get a pre-defined beta schedule for the given name.
The beta schedule library consists of beta schedules which remain similar
in the limit of num_diffusion_timesteps.
Beta schedules may be added, but should not be removed or changed once
they are committed to maintain backwards compatibility.
"""
if schedule_name == "linear":
# Linear schedule from Ho et al, extended to work for any number of
# diffusion steps.
scale = scale_betas * 1000 / num_diffusion_timesteps
beta_start = scale * 0.0001
beta_end = scale * 0.02
return np.linspace(
beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64
)
elif schedule_name == "cosine":
return betas_for_alpha_bar(
num_diffusion_timesteps,
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, ### t=0->1, t=1->0, t=2->1, t=3->0, 近似于 0,1 交替输入
)
else:
raise NotImplementedError(f"unknown beta schedule: {schedule_name}")
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
"""
Create a beta schedule that discretizes the given alpha_t_bar function,
which defines the cumulative product of (1-beta) over time from t = [0,1].
:param num_diffusion_timesteps: the number of betas to produce.
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
produces the cumulative product of (1-beta) up to that
part of the diffusion process.
:param max_beta: the maximum beta to use; use values lower than 1 to
prevent singularities.
"""
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return np.array(betas)
class ModelMeanType(enum.Enum):
"""
Which type of output the model predicts.
"""
PREVIOUS_X = enum.auto() # the model predicts x_{t-1}
START_X = enum.auto() # the model predicts x_0
EPSILON = enum.auto() # the model predicts epsilon
class ModelVarType(enum.Enum):
"""
What is used as the model's output variance.
The LEARNED_RANGE option has been added to allow the model to predict
values between FIXED_SMALL and FIXED_LARGE, making its job easier.
"""
LEARNED = enum.auto()
FIXED_SMALL = enum.auto()
FIXED_LARGE = enum.auto()
LEARNED_RANGE = enum.auto()
class LossType(enum.Enum):
MSE = enum.auto() # use raw MSE loss (and KL when learning variances)
RESCALED_MSE = (
enum.auto()
) # use raw MSE loss (with RESCALED_KL when learning variances)
KL = enum.auto() # use the variational lower-bound
RESCALED_KL = enum.auto() # like KL, but rescale to estimate the full VLB
def is_vb(self):
return self == LossType.KL or self == LossType.RESCALED_KL
class GaussianDiffusion:
"""
Utilities for training and sampling diffusion models.
Ported directly from here, and then adapted over time to further experimentation.
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42
:param betas: a 1-D numpy array of betas for each diffusion timestep,
starting at T and going to 1.
:param model_mean_type: a ModelMeanType determining what the model outputs.
:param model_var_type: a ModelVarType determining how variance is output.
:param loss_type: a LossType determining the loss function to use.
:param rescale_timesteps: if True, pass floating point timesteps into the
model so that they are always scaled like in the
original paper (0 to 1000).
"""
def __init__(
self,
*,
betas,
model_mean_type,
model_var_type,
loss_type,
rescale_timesteps=False,
rep="t2m"
):
self.model_mean_type = model_mean_type
self.model_var_type = model_var_type
self.loss_type = loss_type
self.rescale_timesteps = rescale_timesteps
self.rep = rep
# Use float64 for accuracy.
betas = np.array(betas, dtype=np.float64)
self.betas = betas
assert len(betas.shape) == 1, "betas must be 1-D"
assert (betas > 0).all() and (betas <= 1).all()
self.num_timesteps = int(betas.shape[0])
alphas = 1.0 - betas
self.alphas_cumprod = np.cumprod(alphas, axis=0) #### 累乘变成 alpha_bar
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) ### append 是合并, 意思是倒序排列,但是去掉把第一个换成 1
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) #### 正序排列,但是把第一个换成 0 并插到最后
assert self.alphas_cumprod_prev.shape == (self.num_timesteps,)
# calculations for diffusion q(x_t | x_{t-1}) and others
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)
# calculations for posterior q(x_{t-1} | x_t, x_0)
self.posterior_variance = ( ###### 计算 \mu(xt, x0) 的一部分
betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
)
# log calculation clipped because the posterior variance is 0 at the
# beginning of the diffusion chain.
self.posterior_log_variance_clipped = np.log(
np.append(self.posterior_variance[1], self.posterior_variance[1:])
)
self.posterior_mean_coef1 = (
betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
)
self.posterior_mean_coef2 = (
(1.0 - self.alphas_cumprod_prev)
* np.sqrt(alphas)
/ (1.0 - self.alphas_cumprod)
)
self.l2_loss = lambda a, b: (a - b) ** 2 # th.nn.MSELoss(reduction='none') # must be None for handling mask later on.
def masked_l2(self, a, b, mask, addition_rotate_mask):
loss = self.l2_loss(a, b) #### [bs, 263, 1, num_frames]
loss = sum_flat(loss * mask.float() * addition_rotate_mask.float()) # gives \sigma_euclidean over unmasked elements ### [Batch]
n_entries = a.shape[1] * a.shape[2] ##### BS * 263 * 1 * num_frame -> 263
non_zero_elements = sum_flat(mask) * n_entries
mse_loss_val = loss / non_zero_elements
return mse_loss_val
def q_mean_variance(self, x_start, t):
"""
Get the distribution q(x_t | x_0).
:param x_start: the [N x C x ...] tensor of noiseless inputs.
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
"""
mean = (
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
)
variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
log_variance = _extract_into_tensor(
self.log_one_minus_alphas_cumprod, t, x_start.shape
)
return mean, variance, log_variance
def q_sample(self, x_start, t, noise=None, model_kwargs=None):
"""
Diffuse the dataset for a given number of diffusion steps.
In other words, sample from q(x_t | x_0).
:param x_start: the initial dataset batch.
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
:param noise: if specified, the split-out normal noise.
:return: A noisy version of x_start.
"""
if noise is None:
noise = th.randn_like(x_start)
assert noise.shape == x_start.shape
return ( ######### 前向传播 xt = self.sqrt_alphas_cumprod[t] * x0 + self.sqrt_one_minus_alphas_cumprod[t] * \epsilon
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
+ _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
* noise
)
def q_posterior_mean_variance(self, x_start, x_t, t):
"""
Compute the mean and variance of the diffusion posterior:
q(x_{t-1} | x_t, x_0)
"""
assert x_start.shape == x_t.shape
posterior_mean = (
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
+ _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = _extract_into_tensor(
self.posterior_log_variance_clipped, t, x_t.shape
)
assert (
posterior_mean.shape[0]
== posterior_variance.shape[0]
== posterior_log_variance_clipped.shape[0]
== x_start.shape[0]
)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(
self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None
):
if model_kwargs is None:
model_kwargs = {}
B, C = x.shape[:2]
assert t.shape == (B,)
model_output = model(x, self._scale_timesteps(t), **model_kwargs)
model_output = model_output["output"]
x_t = x
if 'inpainting_mask' in model_kwargs['y'].keys() and 'inpainted_motion' in model_kwargs['y'].keys():
inpainting_mask, inpainted_motion = model_kwargs['y']['inpainting_mask'], model_kwargs['y']['inpainted_motion']
assert self.model_mean_type == ModelMeanType.START_X, 'This feature supports only X_start pred for mow!'
assert model_output.shape == inpainting_mask.shape == inpainted_motion.shape
ones = torch.ones_like(inpainting_mask, dtype=torch.float, device=inpainting_mask.device)
inpainting_mask = ones * inpainting_mask
model_output = (model_output * (1 - inpainting_mask)) + (inpainted_motion * inpainting_mask)
if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]:
assert model_output.shape == (B, C * 2, *x.shape[2:])
model_output, model_var_values = th.split(model_output, C, dim=1)
if self.model_var_type == ModelVarType.LEARNED:
model_log_variance = model_var_values
model_variance = th.exp(model_log_variance)
else:
min_log = _extract_into_tensor(
self.posterior_log_variance_clipped, t, x.shape
)
max_log = _extract_into_tensor(np.log(self.betas), t, x.shape)
# The model_var_values is [-1, 1] for [min_var, max_var].
frac = (model_var_values + 1) / 2
model_log_variance = frac * max_log + (1 - frac) * min_log
model_variance = th.exp(model_log_variance)
else:
model_variance, model_log_variance = {
ModelVarType.FIXED_LARGE: (
np.append(self.posterior_variance[1], self.betas[1:]),
np.log(np.append(self.posterior_variance[1], self.betas[1:])),
),
ModelVarType.FIXED_SMALL: ( ############ USE IT
self.posterior_variance,
self.posterior_log_variance_clipped,
),
}[self.model_var_type]
model_variance = _extract_into_tensor(model_variance, t, x_t.shape)
model_log_variance = _extract_into_tensor(model_log_variance, t, x_t.shape)
def process_xstart(x):
if denoised_fn is not None:
x = denoised_fn(x)
if clip_denoised:
# print('clip_denoised', clip_denoised)
return x.clamp(-1, 1)
return x
if self.model_mean_type == ModelMeanType.PREVIOUS_X:
pred_xstart = process_xstart(
self._predict_xstart_from_xprev(x_t=x_t, t=t, xprev=model_output)
)
model_mean = model_output
elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]: # THIS IS US!
if self.model_mean_type == ModelMeanType.START_X:
pred_xstart = process_xstart(model_output)
else:
pred_xstart = process_xstart(self._predict_xstart_from_eps(x_t=x_t, t=t, eps=model_output))
model_mean, _, _ = self.q_posterior_mean_variance(x_start=pred_xstart, x_t=x_t, t=t)
else:
raise NotImplementedError(self.model_mean_type)
assert (model_mean.shape == model_log_variance.shape == pred_xstart.shape == x_t.shape)
return {
"mean": model_mean,
"variance": model_variance,
"log_variance": model_log_variance,
"pred_xstart": pred_xstart,
}
def _predict_xstart_from_eps(self, x_t, t, eps):
assert x_t.shape == eps.shape
return (
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
- _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
)
def _predict_xstart_from_xprev(self, x_t, t, xprev):
assert x_t.shape == xprev.shape
return ( # (xprev - coef2*x_t) / coef1
_extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev
- _extract_into_tensor(
self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape
)
* x_t
)
def _scale_timesteps(self, t):
if self.rescale_timesteps:
return t.float() * (1000.0 / self.num_timesteps)
return t
def p_sample(
self,
model,
x,
t,
clip_denoised=True,
denoised_fn=None,
cond_fn=None,
model_kwargs=None,
const_noise=False,
):
"""
Sample x_{t-1} from the model at the given timestep.
:param model: the model to sample from.
:param x: the current tensor at x_{t-1}.
:param t: the value of t, starting at 0 for the first diffusion step.
:param clip_denoised: if True, clip the x_start prediction to [-1, 1].
:param denoised_fn: if not None, a function which applies to the
x_start prediction before it is used to sample.
:param cond_fn: if not None, this is a gradient function that acts
similarly to the model.
:param model_kwargs: if not None, a dict of extra keyword arguments to
pass to the model. This can be used for conditioning.
:return: a dict containing the following keys:
- 'sample': a random sample from the model.
- 'pred_xstart': a prediction of x_0.
"""
out = self.p_mean_variance(
model,
x, #### x 列表
t,
clip_denoised=clip_denoised,
denoised_fn=denoised_fn,
model_kwargs=model_kwargs,
)
noise = th.randn_like(out["mean"])
if const_noise:
noise = noise[[0]].repeat(out["mean"].shape[0], 1, 1, 1)
nonzero_mask = ((t != 0).float().view(-1, *([1] * (len(out["mean"].shape) - 1)))) # no noise when t == 0
sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise ## \mu + nonzero_mask * \std * noise
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
def p_sample_loop(
self,
model,
shape,
noise=None,
clip_denoised=True,
denoised_fn=None,
cond_fn=None,
model_kwargs=None,
device=None,
progress=False,
skip_timesteps=0,
init_image=None,
randomize_class=False,
cond_fn_with_grad=False,
dump_steps=None,
const_noise=False,
unfolding_handshake=0, # 0 means no unfolding
eval_mask=None
):
"""
Generate samples from the model.
:param model: the model module.
:param shape: the shape of the samples, (N, C, H, W).
:param noise: if specified, the noise from the encoder to sample.
Should be of the same shape as `shape`.
:param clip_denoised: if True, clip x_start predictions to [-1, 1].
:param denoised_fn: if not None, a function which applies to the
x_start prediction before it is used to sample.
:param cond_fn: if not None, this is a gradient function that acts
similarly to the model.
:param model_kwargs: if not None, a dict of extra keyword arguments to
pass to the model. This can be used for conditioning.
:param device: if specified, the device to create the samples on.
If not specified, use a model parameter's device.
:param progress: if True, show a tqdm progress bar.
:param const_noise: If True, will noise all samples with the same noise throughout sampling
:return: a non-differentiable batch of samples.
"""
final = None
if dump_steps is not None:
dump = []
for i, sample in enumerate(self.p_sample_loop_progressive(
model,
shape,
noise=noise,
clip_denoised=clip_denoised,
denoised_fn=denoised_fn,
cond_fn=cond_fn,
model_kwargs=model_kwargs,
device=device,
progress=progress,
skip_timesteps=skip_timesteps,
init_image=init_image,
randomize_class=randomize_class,
cond_fn_with_grad=cond_fn_with_grad,
const_noise=const_noise,
eval_mask=eval_mask
)):
# unfolding
if unfolding_handshake > 0:
'''
first take 点这里
'''
alpha = torch.arange(0, unfolding_handshake, 1, device=sample['sample'].device) / unfolding_handshake
for sample_i, len in zip(range(1, sample['sample'].shape[0]), model_kwargs['y']['lengths']):
_suffix = sample['sample'][sample_i - 1, :, :, -unfolding_handshake + len:len]
_prefix = sample['sample'][sample_i, :, :, :unfolding_handshake]
try:
_blend = (_suffix * (1 - alpha) + _prefix * alpha)
except(RuntimeError):
print("Error")
sample['sample'][sample_i - 1, :, :, -unfolding_handshake + len:len] = _blend #### 混合操作,保证下一帧的 left = 这一帧的 right, 这样 double take 的时候才能直接用 right 覆盖 left
sample['sample'][sample_i, :, :, :unfolding_handshake] = _blend
if dump_steps is not None and i in dump_steps:
dump.append(deepcopy(sample["sample"]))
final = sample
if dump_steps is not None:
return dump
res = {"output":final["sample"]}
return res
def p_sample_loop_progressive(
self,
model,
shape,
noise=None,
clip_denoised=True,
denoised_fn=None,
cond_fn=None,
model_kwargs=None,
device=None,
progress=False,
skip_timesteps=0,
init_image=None,
randomize_class=False,
cond_fn_with_grad=False,
const_noise=False,
eval_mask=None
):
"""
Generate samples from the model and yield intermediate samples from
each timestep of diffusion.
Arguments are the same as p_sample_loop().
Returns a generator over dicts, where each dict is the return value of
p_sample().
"""
if device is None:
device = next(model.parameters()).device
assert isinstance(shape, (tuple, list))
if noise is not None:
img = noise
else:
img = th.randn(*shape, device=device)
if skip_timesteps and init_image is None:
init_image = th.zeros_like(img)
indices = list(range(self.num_timesteps - skip_timesteps))[::-1] #### [999, 998, ... 0]
if init_image is not None:
my_t = th.ones([shape[0]], device=device, dtype=th.long) * indices[0]
img = self.q_sample(init_image, my_t, img, model_kwargs=model_kwargs)
'''
把 eval_mask 放在这里相当于初始化时若干帧的结果存在问题
如果把 eval_mask 放在循环中, 就相当于推理过程中指定位置一直在生成不同的错误帧
'''
if eval_mask is not None and img.shape[0] != 1:
rand_img = torch.randperm(img.shape[0])
rand_img = img[rand_img]
img = img * (1 - eval_mask) + rand_img * eval_mask
elif eval_mask is not None and img.shape[0] == 1:
rand_img = th.randn(*shape, device=device)
img = img * (1 - eval_mask) + rand_img * eval_mask
if progress:
# Lazy import so that we don't depend on tqdm.
from tqdm.auto import tqdm
indices = tqdm(indices)
for i in indices:
t = th.tensor([i] * shape[0], device=device) ### t = [999]
if randomize_class and 'y' in model_kwargs:
model_kwargs['y'] = th.randint(low=0, high=model.num_classes,
size=model_kwargs['y'].shape,
device=model_kwargs['y'].device)
with th.no_grad():
sample_fn = self.p_sample
condition = deepcopy(model_kwargs)
out = sample_fn(
model,
img,
t,
clip_denoised=clip_denoised,
denoised_fn=denoised_fn,
cond_fn=cond_fn,
model_kwargs=condition,
const_noise=const_noise,
)
yield out
img = out["sample"] ##### 最开始是随机噪声,然后会得到 999 的输出,然后得到 998 的输出,最后一步是预测的 x0
def training_losses(self, model, x_start, t, model_kwargs=None, noise=None):
"""
Compute training losses for a single timestep.
:param model: the model to evaluate loss on.
:param x_start: the [N x C x ...] tensor of inputs. 生成目标 x0
:param t: a batch of timestep indices.
:param model_kwargs: if not None, a dict of extra keyword arguments to
pass to the model. This can be used for conditioning.
:param noise: if specified, the specific Gaussian noise to try to remove.
:return: a dict with the key "loss" containing a tensor of shape [N].
Some mean or variance settings may also have other keys.
"""
mask = model_kwargs['y']['mask']
if len(x_start.shape) == 3:
x_start = x_start.permute(0, 2, 1).unsqueeze(2)
elif len(x_start.shape) == 4:
x_start = x_start.permute(0, 2, 3, 1)
if self.rep == "smplx":
addition_rotate_mask = torch.ones_like(x_start)
# addition_rotate_mask = mask.repeat(1, x_start.shape[1], x_start.shape[2], 1) ### [bs, njoints, nfeats, nframes]
# speed = x_start[..., 1::] - x_start[..., :-1] #### [bs, njoints, nfeats, nframes-1]
# speed = speed.sum(dim=-1).sum(dim=-1) #### [bs, njoints]
# nosub = speed == 0 #### find joints that have no change between different frames and not calculate loss function
# addition_rotate_mask[nosub] = 0
else:
addition_rotate_mask = torch.ones_like(x_start)
if noise is None:
noise = th.randn_like(x_start)
x_t = self.q_sample(x_start, t, noise=noise, model_kwargs=model_kwargs) ###### 前向传播 x0 到 xt
terms = {}
if self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE: #### 默认用 mse 损失
model_output = model(x_t, self._scale_timesteps(t), **model_kwargs) #### mixup_res
model_output = model_output["output"] #### [bs, 263, 1, nframes] -> [nfrmaes, bs, 512] -> [bs, 263, 1, nframes]
if self.model_mean_type == ModelMeanType.START_X:
target = x_start
elif self.model_mean_type == ModelMeanType.EPSILON:
target = noise
elif self.model_mean_type == ModelMeanType.PREVIOUS_X:
target = self.q_posterior_mean_variance(x_start=x_start, x_t=x_t, t=t)[0]
assert model_output.shape == target.shape == x_start.shape
terms["rot_mse"] = self.masked_l2(target, model_output, mask, addition_rotate_mask=addition_rotate_mask)
terms["loss"] = terms["rot_mse"]
else:
raise NotImplementedError(self.loss_type)
return terms
def _extract_into_tensor(arr, timesteps, broadcast_shape):
"""
Extract values from a 1-D numpy array for a batch of indices.
:param arr: the 1-D numpy array.
:param timesteps: a tensor of indices into the array to extract.
:param broadcast_shape: a larger shape of K dimensions with the batch
dimension equal to the length of timesteps.
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
"""
res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
while len(res.shape) < len(broadcast_shape):
res = res[..., None]
return res.expand(broadcast_shape)
|