affective-visdial / README.md
Kilich's picture
Upload README.md
bf88262
<div align="center">
<p align="center">
<img src="assets/img/web_teaser.png" width=500px/>
</p>
<h1 align="center">
</h1>
<h1 align="center">
Affective Visual Dialog: A Large-Scale Benchmark for Emotional Reasoning Based on Visually Grounded Conversations
</h1>
[![arXiv](https://img.shields.io/badge/πŸ“š%20arXiv-grey?logoColor=white&logoWidth=20)](#)
[![Download (coming soon)](https://img.shields.io/badge/πŸ“¦%20Download-grey?logoColor=white&logoWidth=20)](#)
[![Website](https://img.shields.io/badge/🌐%20Website-green?logoColor=white&logoWidth=20)](https://affective-visual-dialog.github.io/)
</div>
## πŸ“° News
- **30/08/2023**: The preprint of our paper is now available on [arXiv](https://arxiv.org/abs/2308.16349).
## Summary
- [πŸ“° News](#-news)
- [Summary](#summary)
- [πŸ“š Introduction](#-introduction)
- [πŸ“Š Baselines](#-baselines)
- [Citation](#citation)
- [References](#references)
<br>
## πŸ“š Introduction
AffectVisDial is a large-scale dataset which consists of 50K 10-turn visually grounded dialogs as well as concluding emotion attributions and dialog-informed textual emotion explanations.
<br>
## πŸ“Š Baselines
We provide baseline models explanation generation task:
- [GenLM](./baselines/GenLM/): BERT- and BART-based models [3, 4]
- [NLX-GPT](./baselines/nlx): NLX-GPT based model [1]
<br>
## Citation
If you use our dataset, please cite the two following references:
```bibtex
@article{haydarov2023affective,
title={Affective Visual Dialog: A Large-Scale Benchmark for Emotional Reasoning Based on Visually Grounded Conversations},
author={Haydarov, Kilichbek and Shen, Xiaoqian and Madasu, Avinash and Salem, Mahmoud and Li, Li-Jia and Elsayed, Gamaleldin and Elhoseiny, Mohamed},
journal={arXiv preprint arXiv:2308.16349},
year={2023}
}
```
</br>
## References
1. _[Sammani et al., 2022] - NLX-GPT: A Model for Natural Language Explanations in Vision and Vision-Language Tasks
2. _[Li et al., 2022]_ - BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
3. _[Lewis et al., 2019]_ - BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension.
4. _[Dewlin et al., 2018]_ - BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding