Kashif17's picture
Update app.py
884da84 verified
import gradio as gr
from huggingface_hub import InferenceClient
import pandas as pd
import matplotlib.pyplot as plt
import io
import sqlite3
# Initialize the InferenceClient with the specified model
client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta")
# Specify the path to your CSV file here
csv_file_path = 'Movies.csv'
# Load dataset into a dataframe
df = pd.read_csv(csv_file_path)
# Function to generate SQL queries
def generate_sql_query(prompt, table_metadata):
input_text = f"Generate an SQL query for the table with the following structure: {table_metadata}. Prompt: {prompt}"
response = ""
for message in client.chat_completion(
messages=[{"role": "system", "content": input_text}],
max_tokens=512,
stream=True,
temperature=0.7,
top_p=0.95,
):
token = message.choices[0].delta.content
response += token
return response
# Function to execute SQL query on the dataframe
def execute_query(df, query):
try:
with sqlite3.connect(':memory:') as conn:
df.to_sql('data', conn, index=False, if_exists='replace')
result_df = pd.read_sql_query(query, conn)
return result_df
except Exception as e:
return str(e)
# Function to create a plot from the result dataframe
def create_plot(df):
fig, ax = plt.subplots()
df.plot(ax=ax)
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
return buf
# Gradio function to handle user input and interaction
def respond(user_prompt, system_message, max_tokens, temperature, top_p):
table_metadata = str(df.dtypes.to_dict())
sql_query = generate_sql_query(user_prompt, table_metadata)
result_df = execute_query(df, sql_query)
if isinstance(result_df, str):
return sql_query, result_df, None # Return the error message
plot = create_plot(result_df)
return sql_query, result_df.head().to_html(), plot
# Gradio UI components
def create_demo():
with gr.Blocks() as demo:
user_prompt = gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="User Prompt")
system_message = gr.Textbox(value="You are an AI assistant that generates SQL queries based on user prompts.", label="System message")
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
output_sql_query = gr.Textbox(label="Generated SQL Query")
output_result_df = gr.HTML(label="Query Result")
output_plot = gr.Image(label="Result Plot")
submit_btn = gr.Button("Submit")
submit_btn.click(respond, inputs=[user_prompt, system_message, max_tokens, temperature, top_p], outputs=[output_sql_query, output_result_df, output_plot])
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch()