Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,63 +1,83 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
"""
|
| 7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
history: list[tuple[str, str]],
|
| 13 |
-
system_message,
|
| 14 |
-
max_tokens,
|
| 15 |
-
temperature,
|
| 16 |
-
top_p,
|
| 17 |
-
):
|
| 18 |
-
messages = [{"role": "system", "content": system_message}]
|
| 19 |
-
|
| 20 |
-
for val in history:
|
| 21 |
-
if val[0]:
|
| 22 |
-
messages.append({"role": "user", "content": val[0]})
|
| 23 |
-
if val[1]:
|
| 24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
-
|
| 26 |
-
messages.append({"role": "user", "content": message})
|
| 27 |
|
|
|
|
|
|
|
|
|
|
| 28 |
response = ""
|
| 29 |
-
|
| 30 |
for message in client.chat_completion(
|
| 31 |
-
messages,
|
| 32 |
-
max_tokens=
|
| 33 |
stream=True,
|
| 34 |
-
temperature=
|
| 35 |
-
top_p=
|
| 36 |
):
|
| 37 |
token = message.choices[0].delta.content
|
| 38 |
-
|
| 39 |
response += token
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
|
|
|
| 61 |
|
| 62 |
if __name__ == "__main__":
|
| 63 |
-
demo
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from huggingface_hub import InferenceClient
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import io
|
| 6 |
+
import sqlite3
|
| 7 |
|
| 8 |
+
# Initialize the InferenceClient with the specified model
|
| 9 |
+
client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta")
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# Specify the path to your CSV file here
|
| 12 |
+
csv_file_path = 'Movies.csv'
|
| 13 |
|
| 14 |
+
# Load dataset into a dataframe
|
| 15 |
+
df = pd.read_csv(csv_file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
# Function to generate SQL queries
|
| 18 |
+
def generate_sql_query(prompt, table_metadata):
|
| 19 |
+
input_text = f"Generate an SQL query for the table with the following structure: {table_metadata}. Prompt: {prompt}"
|
| 20 |
response = ""
|
|
|
|
| 21 |
for message in client.chat_completion(
|
| 22 |
+
messages=[{"role": "system", "content": input_text}],
|
| 23 |
+
max_tokens=512,
|
| 24 |
stream=True,
|
| 25 |
+
temperature=0.7,
|
| 26 |
+
top_p=0.95,
|
| 27 |
):
|
| 28 |
token = message.choices[0].delta.content
|
|
|
|
| 29 |
response += token
|
| 30 |
+
return response
|
| 31 |
+
|
| 32 |
+
# Function to execute SQL query on the dataframe
|
| 33 |
+
def execute_query(df, query):
|
| 34 |
+
try:
|
| 35 |
+
with sqlite3.connect(':memory:') as conn:
|
| 36 |
+
df.to_sql('data', conn, index=False, if_exists='replace')
|
| 37 |
+
result_df = pd.read_sql_query(query, conn)
|
| 38 |
+
return result_df
|
| 39 |
+
except Exception as e:
|
| 40 |
+
return str(e)
|
| 41 |
+
|
| 42 |
+
# Function to create a plot from the result dataframe
|
| 43 |
+
def create_plot(df):
|
| 44 |
+
fig, ax = plt.subplots()
|
| 45 |
+
df.plot(ax=ax)
|
| 46 |
+
buf = io.BytesIO()
|
| 47 |
+
plt.savefig(buf, format='png')
|
| 48 |
+
buf.seek(0)
|
| 49 |
+
return buf
|
| 50 |
+
|
| 51 |
+
# Gradio function to handle user input and interaction
|
| 52 |
+
def respond(user_prompt, system_message, max_tokens, temperature, top_p):
|
| 53 |
+
table_metadata = str(df.dtypes.to_dict())
|
| 54 |
+
sql_query = generate_sql_query(user_prompt, table_metadata)
|
| 55 |
+
result_df = execute_query(df, sql_query)
|
| 56 |
+
|
| 57 |
+
if isinstance(result_df, str):
|
| 58 |
+
return sql_query, result_df, None # Return the error message
|
| 59 |
+
|
| 60 |
+
plot = create_plot(result_df)
|
| 61 |
+
return sql_query, result_df.head().to_html(), plot
|
| 62 |
+
|
| 63 |
+
# Gradio UI components
|
| 64 |
+
def create_demo():
|
| 65 |
+
with gr.Blocks() as demo:
|
| 66 |
+
user_prompt = gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="User Prompt")
|
| 67 |
+
system_message = gr.Textbox(value="You are an AI assistant that generates SQL queries based on user prompts.", label="System message")
|
| 68 |
+
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
|
| 69 |
+
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
|
| 70 |
+
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
|
| 71 |
+
|
| 72 |
+
output_sql_query = gr.Textbox(label="Generated SQL Query")
|
| 73 |
+
output_result_df = gr.HTML(label="Query Result")
|
| 74 |
+
output_plot = gr.Image(label="Result Plot")
|
| 75 |
+
|
| 76 |
+
submit_btn = gr.Button("Submit")
|
| 77 |
+
submit_btn.click(respond, inputs=[user_prompt, system_message, max_tokens, temperature, top_p], outputs=[output_sql_query, output_result_df, output_plot])
|
| 78 |
|
| 79 |
+
return demo
|
| 80 |
|
| 81 |
if __name__ == "__main__":
|
| 82 |
+
demo = create_demo()
|
| 83 |
+
demo.launch()
|