Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
"""Converts a Whisper model in OpenAI format to Hugging Face format.""" | |
# Copyright 2022 The HuggingFace Inc. team and the OpenAI team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import argparse | |
import io | |
import json | |
import os | |
import tempfile | |
import urllib | |
import warnings | |
from typing import Any, List, Optional, Tuple | |
import torch | |
from huggingface_hub.utils import insecure_hashlib | |
from torch import nn | |
from tqdm import tqdm | |
from transformers import ( | |
GenerationConfig, | |
WhisperConfig, | |
WhisperFeatureExtractor, | |
WhisperForConditionalGeneration, | |
WhisperProcessor, | |
WhisperTokenizer, | |
WhisperTokenizerFast, | |
) | |
from transformers.models.whisper.tokenization_whisper import LANGUAGES, bytes_to_unicode | |
from transformers.utils.import_utils import _is_package_available | |
_MODELS = { | |
"tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", | |
"tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", | |
"base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", | |
"base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", | |
"small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", | |
"small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", | |
"medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", | |
"medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", | |
"large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt", | |
"large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", | |
"large-v3": "https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt", | |
} | |
_TOKENIZERS = { | |
"multilingual": "https://raw.githubusercontent.com/openai/whisper/main/whisper/assets/multilingual.tiktoken", | |
"english": "https://raw.githubusercontent.com/openai/whisper/main/whisper/assets/gpt2.tiktoken", | |
} | |
def _get_generation_config( | |
is_multilingual: bool, | |
num_languages: int = 100, | |
openai_version: Optional[str] = None, | |
) -> GenerationConfig: | |
""" | |
Loads the appropriate generation config from HF repo | |
""" | |
if openai_version is not None: | |
repo = f"openai/whisper-{openai_version}" | |
elif not is_multilingual: | |
repo = "openai/whisper-medium.en" | |
elif num_languages < 100: | |
repo = "openai/whisper-large-v2" | |
else: | |
repo = "openai/whisper-large-v3" | |
gen_cfg = GenerationConfig.from_pretrained(repo) | |
if openai_version is None: | |
gen_cfg.alignment_heads = None | |
warnings.warn( | |
"Alignment heads have not been included in the generation config, since they are available " | |
"only for the original OpenAI checkpoints." | |
"If you want to use word-level timestamps with a custom version of Whisper," | |
"see https://github.com/openai/whisper/blob/main/notebooks/Multilingual_ASR.ipynb" | |
"for the example of how to produce word-level timestamps manually." | |
) | |
return gen_cfg | |
def remove_ignore_keys_(state_dict): | |
ignore_keys = ["layers", "blocks"] | |
for k in ignore_keys: | |
state_dict.pop(k, None) | |
WHISPER_MAPPING = { | |
"blocks": "layers", | |
"mlp.0": "fc1", | |
"mlp.2": "fc2", | |
"mlp_ln": "final_layer_norm", | |
".attn.query": ".self_attn.q_proj", | |
".attn.key": ".self_attn.k_proj", | |
".attn.value": ".self_attn.v_proj", | |
".attn_ln": ".self_attn_layer_norm", | |
".attn.out": ".self_attn.out_proj", | |
".cross_attn.query": ".encoder_attn.q_proj", | |
".cross_attn.key": ".encoder_attn.k_proj", | |
".cross_attn.value": ".encoder_attn.v_proj", | |
".cross_attn_ln": ".encoder_attn_layer_norm", | |
".cross_attn.out": ".encoder_attn.out_proj", | |
"decoder.ln.": "decoder.layer_norm.", | |
"encoder.ln.": "encoder.layer_norm.", | |
"token_embedding": "embed_tokens", | |
"encoder.positional_embedding": "encoder.embed_positions.weight", | |
"decoder.positional_embedding": "decoder.embed_positions.weight", | |
"ln_post": "layer_norm", | |
} | |
def rename_keys(s_dict): | |
keys = list(s_dict.keys()) | |
for key in keys: | |
new_key = key | |
for k, v in WHISPER_MAPPING.items(): | |
if k in key: | |
new_key = new_key.replace(k, v) | |
print(f"{key} -> {new_key}") | |
s_dict[new_key] = s_dict.pop(key) | |
return s_dict | |
def make_linear_from_emb(emb): | |
vocab_size, emb_size = emb.weight.shape | |
lin_layer = nn.Linear(vocab_size, emb_size, bias=False) | |
lin_layer.weight.data = emb.weight.data | |
return lin_layer | |
def _download(url: str, root: str) -> Any: | |
os.makedirs(root, exist_ok=True) | |
filename = os.path.basename(url) | |
expected_sha256 = url.split("/")[-2] | |
download_target = os.path.join(root, filename) | |
if os.path.exists(download_target) and not os.path.isfile(download_target): | |
raise RuntimeError(f"{download_target} exists and is not a regular file") | |
if os.path.isfile(download_target): | |
model_bytes = open(download_target, "rb").read() | |
if insecure_hashlib.sha256(model_bytes).hexdigest() == expected_sha256: | |
return torch.load(io.BytesIO(model_bytes)) | |
else: | |
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") | |
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: | |
with tqdm( | |
total=int(source.info().get("Content-Length")), ncols=80, unit="iB", unit_scale=True, unit_divisor=1024 | |
) as loop: | |
while True: | |
buffer = source.read(8192) | |
if not buffer: | |
break | |
output.write(buffer) | |
loop.update(len(buffer)) | |
model_bytes = open(download_target, "rb").read() | |
if insecure_hashlib.sha256(model_bytes).hexdigest() != expected_sha256: | |
raise RuntimeError( | |
"Model has been downloaded but the SHA256 checksum does not match. Please retry loading the model." | |
) | |
return torch.load(io.BytesIO(model_bytes)) | |
def convert_openai_whisper_to_tfms( | |
checkpoint_path, pytorch_dump_folder_path | |
) -> Tuple[WhisperForConditionalGeneration, bool, int]: | |
if ".pt" not in checkpoint_path: | |
root = os.path.dirname(pytorch_dump_folder_path) or "." | |
original_checkpoint = _download(_MODELS[checkpoint_path], root) | |
openai_version = checkpoint_path | |
else: | |
original_checkpoint = torch.load(checkpoint_path, map_location="cpu") | |
openai_version = None | |
dimensions = original_checkpoint["dims"] | |
state_dict = original_checkpoint["model_state_dict"] | |
proj_out_weights = state_dict["decoder.token_embedding.weight"] | |
remove_ignore_keys_(state_dict) | |
rename_keys(state_dict) | |
tie_embeds = True | |
ffn_dim = state_dict["decoder.layers.0.fc1.weight"].shape[0] | |
# a hacky way to properly set up the bos/eos/pad token ids in the model | |
endoftext_id = 50257 if dimensions["n_vocab"] > 51865 else 50256 | |
config = WhisperConfig( | |
vocab_size=dimensions["n_vocab"], | |
encoder_ffn_dim=ffn_dim, | |
decoder_ffn_dim=ffn_dim, | |
num_mel_bins=dimensions["n_mels"], | |
d_model=dimensions["n_audio_state"], | |
max_target_positions=dimensions["n_text_ctx"], | |
encoder_layers=dimensions["n_audio_layer"], | |
encoder_attention_heads=dimensions["n_audio_head"], | |
decoder_layers=dimensions["n_text_layer"], | |
decoder_attention_heads=dimensions["n_text_head"], | |
max_source_positions=dimensions["n_audio_ctx"], | |
eos_token_id=endoftext_id, | |
bos_token_id=endoftext_id, | |
pad_token_id=endoftext_id, | |
decoder_start_token_id=endoftext_id + 1, | |
) | |
model = WhisperForConditionalGeneration(config) | |
missing, unexpected = model.model.load_state_dict(state_dict, strict=False) | |
if len(missing) > 0 and not set(missing) <= { | |
"encoder.embed_positions.weights", | |
"decoder.embed_positions.weights", | |
}: | |
raise ValueError( | |
"Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," | |
f" but all the following weights are missing {missing}" | |
) | |
if tie_embeds: | |
model.proj_out = make_linear_from_emb(model.model.decoder.embed_tokens) | |
else: | |
model.proj_out.weight.data = proj_out_weights | |
# determine those parameters from a model checkpoint as Whisper repo does | |
is_multilingual = model.config.vocab_size >= 51865 | |
num_languages = model.config.vocab_size - 51765 - int(is_multilingual) | |
model.generation_config = _get_generation_config( | |
is_multilingual, | |
num_languages, | |
openai_version, | |
) | |
return model, is_multilingual, num_languages | |
# Adapted from https://github.com/openai/tiktoken/issues/60#issuecomment-1499977960 | |
def _bpe(mergeable_ranks, token: bytes, max_rank=None) -> List[bytes]: | |
parts = [bytes([b]) for b in token] | |
while True: | |
min_idx = None | |
min_rank = None | |
for i, pair in enumerate(zip(parts[:-1], parts[1:])): | |
rank = mergeable_ranks.get(pair[0] + pair[1]) | |
if rank is not None and (min_rank is None or rank < min_rank): | |
min_idx = i | |
min_rank = rank | |
if min_rank is None or (max_rank is not None and min_rank >= max_rank): | |
break | |
assert min_idx is not None | |
parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2 :] | |
return parts | |
def convert_tiktoken_bpe_to_hf(tiktoken_url: str): | |
bpe_ranks = load_tiktoken_bpe(tiktoken_url) | |
byte_encoder = bytes_to_unicode() | |
def token_bytes_to_string(b): | |
return "".join([byte_encoder[ord(char)] for char in b.decode("latin-1")]) | |
merges = [] | |
vocab = {} | |
for token, rank in bpe_ranks.items(): | |
vocab[token_bytes_to_string(token)] = rank | |
if len(token) == 1: | |
continue | |
merged = tuple(_bpe(bpe_ranks, token, max_rank=rank)) | |
if len(merged) == 2: # account for empty token | |
merges.append(" ".join(map(token_bytes_to_string, merged))) | |
return vocab, merges | |
def convert_tiktoken_to_hf( | |
multilingual: bool = True, num_languages: int = 100, time_precision=0.02 | |
) -> WhisperTokenizer: | |
# requires whisper, unless we use the path to the tiktoken file | |
tiktoken_tokenizer_path = _TOKENIZERS["multilingual" if multilingual else "english"] | |
start_of_transcript = ["<|endoftext|>", "<|startoftranscript|>"] | |
control_tokens = [ | |
"<|translate|>", | |
"<|transcribe|>", | |
"<|startoflm|>", | |
"<|startofprev|>", | |
"<|nospeech|>", | |
"<|notimestamps|>", | |
] | |
# these are special tokens, not normalized | |
language_tokens = [f"<|{k}|>" for k in list(LANGUAGES)[:num_languages]] | |
# These are not special but normalized | |
timestamp_tokens = [("<|%.2f|>" % (i * time_precision)) for i in range(1500 + 1)] | |
vocab, merges = convert_tiktoken_bpe_to_hf(tiktoken_tokenizer_path) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
vocab_file = f"{tmpdirname}/vocab.json" | |
merge_file = f"{tmpdirname}/merges.txt" | |
with open(vocab_file, "w", encoding="utf-8") as f: | |
f.write(json.dumps(vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n") | |
with open(merge_file, "w", encoding="utf-8") as writer: | |
writer.write("#version: 0.2\n") | |
for bpe_tokens in merges: | |
writer.write(bpe_tokens + "\n") | |
hf_tokenizer = WhisperTokenizer(vocab_file, merge_file) | |
hf_tokenizer.add_tokens(start_of_transcript + language_tokens + control_tokens, special_tokens=True) | |
hf_tokenizer.add_tokens(timestamp_tokens, special_tokens=False) | |
return hf_tokenizer | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
# # Required parameters | |
parser.add_argument("--checkpoint_path", type=str, help="Path to the downloaded checkpoints") | |
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") | |
parser.add_argument( | |
"--convert_preprocessor", | |
type=bool, | |
default=False, | |
help="Whether or not the preprocessor (tokenizer + feature extractor) should be converted along with the model.", | |
) | |
args = parser.parse_args() | |
model, is_multilingual, num_languages = convert_openai_whisper_to_tfms( | |
args.checkpoint_path, args.pytorch_dump_folder_path | |
) | |
if args.convert_preprocessor: | |
try: | |
if not _is_package_available("tiktoken"): | |
raise ModuleNotFoundError( | |
"""`tiktoken` is not installed, use `pip install tiktoken` to convert the tokenizer""" | |
) | |
except Exception as e: | |
print(e) | |
else: | |
from tiktoken.load import load_tiktoken_bpe | |
tokenizer = convert_tiktoken_to_hf(is_multilingual, num_languages) | |
feature_extractor = WhisperFeatureExtractor( | |
feature_size=model.config.num_mel_bins, | |
# the rest of default parameters are the same as hardcoded in openai/whisper | |
) | |
processor = WhisperProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) | |
processor.save_pretrained(args.pytorch_dump_folder_path) | |
# save fast tokenizer as well | |
fast_tokenizer = WhisperTokenizerFast.from_pretrained(args.pytorch_dump_folder_path) | |
fast_tokenizer.save_pretrained(args.pytorch_dump_folder_path, legacy_format=False) | |
model.save_pretrained(args.pytorch_dump_folder_path) | |