Spaces:
Sleeping
Sleeping
File size: 14,961 Bytes
ffc786b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
#!/usr/bin/env python
"""Converts a Whisper model in OpenAI format to Hugging Face format."""
# Copyright 2022 The HuggingFace Inc. team and the OpenAI team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import io
import json
import os
import tempfile
import urllib
import warnings
from typing import Any, List, Optional, Tuple
import torch
from huggingface_hub.utils import insecure_hashlib
from torch import nn
from tqdm import tqdm
from transformers import (
GenerationConfig,
WhisperConfig,
WhisperFeatureExtractor,
WhisperForConditionalGeneration,
WhisperProcessor,
WhisperTokenizer,
WhisperTokenizerFast,
)
from transformers.models.whisper.tokenization_whisper import LANGUAGES, bytes_to_unicode
from transformers.utils.import_utils import _is_package_available
_MODELS = {
"tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt",
"tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt",
"base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt",
"base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt",
"small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt",
"small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt",
"medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt",
"medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt",
"large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt",
"large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt",
"large-v3": "https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt",
}
_TOKENIZERS = {
"multilingual": "https://raw.githubusercontent.com/openai/whisper/main/whisper/assets/multilingual.tiktoken",
"english": "https://raw.githubusercontent.com/openai/whisper/main/whisper/assets/gpt2.tiktoken",
}
def _get_generation_config(
is_multilingual: bool,
num_languages: int = 100,
openai_version: Optional[str] = None,
) -> GenerationConfig:
"""
Loads the appropriate generation config from HF repo
"""
if openai_version is not None:
repo = f"openai/whisper-{openai_version}"
elif not is_multilingual:
repo = "openai/whisper-medium.en"
elif num_languages < 100:
repo = "openai/whisper-large-v2"
else:
repo = "openai/whisper-large-v3"
gen_cfg = GenerationConfig.from_pretrained(repo)
if openai_version is None:
gen_cfg.alignment_heads = None
warnings.warn(
"Alignment heads have not been included in the generation config, since they are available "
"only for the original OpenAI checkpoints."
"If you want to use word-level timestamps with a custom version of Whisper,"
"see https://github.com/openai/whisper/blob/main/notebooks/Multilingual_ASR.ipynb"
"for the example of how to produce word-level timestamps manually."
)
return gen_cfg
def remove_ignore_keys_(state_dict):
ignore_keys = ["layers", "blocks"]
for k in ignore_keys:
state_dict.pop(k, None)
WHISPER_MAPPING = {
"blocks": "layers",
"mlp.0": "fc1",
"mlp.2": "fc2",
"mlp_ln": "final_layer_norm",
".attn.query": ".self_attn.q_proj",
".attn.key": ".self_attn.k_proj",
".attn.value": ".self_attn.v_proj",
".attn_ln": ".self_attn_layer_norm",
".attn.out": ".self_attn.out_proj",
".cross_attn.query": ".encoder_attn.q_proj",
".cross_attn.key": ".encoder_attn.k_proj",
".cross_attn.value": ".encoder_attn.v_proj",
".cross_attn_ln": ".encoder_attn_layer_norm",
".cross_attn.out": ".encoder_attn.out_proj",
"decoder.ln.": "decoder.layer_norm.",
"encoder.ln.": "encoder.layer_norm.",
"token_embedding": "embed_tokens",
"encoder.positional_embedding": "encoder.embed_positions.weight",
"decoder.positional_embedding": "decoder.embed_positions.weight",
"ln_post": "layer_norm",
}
def rename_keys(s_dict):
keys = list(s_dict.keys())
for key in keys:
new_key = key
for k, v in WHISPER_MAPPING.items():
if k in key:
new_key = new_key.replace(k, v)
print(f"{key} -> {new_key}")
s_dict[new_key] = s_dict.pop(key)
return s_dict
def make_linear_from_emb(emb):
vocab_size, emb_size = emb.weight.shape
lin_layer = nn.Linear(vocab_size, emb_size, bias=False)
lin_layer.weight.data = emb.weight.data
return lin_layer
def _download(url: str, root: str) -> Any:
os.makedirs(root, exist_ok=True)
filename = os.path.basename(url)
expected_sha256 = url.split("/")[-2]
download_target = os.path.join(root, filename)
if os.path.exists(download_target) and not os.path.isfile(download_target):
raise RuntimeError(f"{download_target} exists and is not a regular file")
if os.path.isfile(download_target):
model_bytes = open(download_target, "rb").read()
if insecure_hashlib.sha256(model_bytes).hexdigest() == expected_sha256:
return torch.load(io.BytesIO(model_bytes))
else:
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
with tqdm(
total=int(source.info().get("Content-Length")), ncols=80, unit="iB", unit_scale=True, unit_divisor=1024
) as loop:
while True:
buffer = source.read(8192)
if not buffer:
break
output.write(buffer)
loop.update(len(buffer))
model_bytes = open(download_target, "rb").read()
if insecure_hashlib.sha256(model_bytes).hexdigest() != expected_sha256:
raise RuntimeError(
"Model has been downloaded but the SHA256 checksum does not match. Please retry loading the model."
)
return torch.load(io.BytesIO(model_bytes))
def convert_openai_whisper_to_tfms(
checkpoint_path, pytorch_dump_folder_path
) -> Tuple[WhisperForConditionalGeneration, bool, int]:
if ".pt" not in checkpoint_path:
root = os.path.dirname(pytorch_dump_folder_path) or "."
original_checkpoint = _download(_MODELS[checkpoint_path], root)
openai_version = checkpoint_path
else:
original_checkpoint = torch.load(checkpoint_path, map_location="cpu")
openai_version = None
dimensions = original_checkpoint["dims"]
state_dict = original_checkpoint["model_state_dict"]
proj_out_weights = state_dict["decoder.token_embedding.weight"]
remove_ignore_keys_(state_dict)
rename_keys(state_dict)
tie_embeds = True
ffn_dim = state_dict["decoder.layers.0.fc1.weight"].shape[0]
# a hacky way to properly set up the bos/eos/pad token ids in the model
endoftext_id = 50257 if dimensions["n_vocab"] > 51865 else 50256
config = WhisperConfig(
vocab_size=dimensions["n_vocab"],
encoder_ffn_dim=ffn_dim,
decoder_ffn_dim=ffn_dim,
num_mel_bins=dimensions["n_mels"],
d_model=dimensions["n_audio_state"],
max_target_positions=dimensions["n_text_ctx"],
encoder_layers=dimensions["n_audio_layer"],
encoder_attention_heads=dimensions["n_audio_head"],
decoder_layers=dimensions["n_text_layer"],
decoder_attention_heads=dimensions["n_text_head"],
max_source_positions=dimensions["n_audio_ctx"],
eos_token_id=endoftext_id,
bos_token_id=endoftext_id,
pad_token_id=endoftext_id,
decoder_start_token_id=endoftext_id + 1,
)
model = WhisperForConditionalGeneration(config)
missing, unexpected = model.model.load_state_dict(state_dict, strict=False)
if len(missing) > 0 and not set(missing) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
"Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,"
f" but all the following weights are missing {missing}"
)
if tie_embeds:
model.proj_out = make_linear_from_emb(model.model.decoder.embed_tokens)
else:
model.proj_out.weight.data = proj_out_weights
# determine those parameters from a model checkpoint as Whisper repo does
is_multilingual = model.config.vocab_size >= 51865
num_languages = model.config.vocab_size - 51765 - int(is_multilingual)
model.generation_config = _get_generation_config(
is_multilingual,
num_languages,
openai_version,
)
return model, is_multilingual, num_languages
# Adapted from https://github.com/openai/tiktoken/issues/60#issuecomment-1499977960
def _bpe(mergeable_ranks, token: bytes, max_rank=None) -> List[bytes]:
parts = [bytes([b]) for b in token]
while True:
min_idx = None
min_rank = None
for i, pair in enumerate(zip(parts[:-1], parts[1:])):
rank = mergeable_ranks.get(pair[0] + pair[1])
if rank is not None and (min_rank is None or rank < min_rank):
min_idx = i
min_rank = rank
if min_rank is None or (max_rank is not None and min_rank >= max_rank):
break
assert min_idx is not None
parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2 :]
return parts
def convert_tiktoken_bpe_to_hf(tiktoken_url: str):
bpe_ranks = load_tiktoken_bpe(tiktoken_url)
byte_encoder = bytes_to_unicode()
def token_bytes_to_string(b):
return "".join([byte_encoder[ord(char)] for char in b.decode("latin-1")])
merges = []
vocab = {}
for token, rank in bpe_ranks.items():
vocab[token_bytes_to_string(token)] = rank
if len(token) == 1:
continue
merged = tuple(_bpe(bpe_ranks, token, max_rank=rank))
if len(merged) == 2: # account for empty token
merges.append(" ".join(map(token_bytes_to_string, merged)))
return vocab, merges
def convert_tiktoken_to_hf(
multilingual: bool = True, num_languages: int = 100, time_precision=0.02
) -> WhisperTokenizer:
# requires whisper, unless we use the path to the tiktoken file
tiktoken_tokenizer_path = _TOKENIZERS["multilingual" if multilingual else "english"]
start_of_transcript = ["<|endoftext|>", "<|startoftranscript|>"]
control_tokens = [
"<|translate|>",
"<|transcribe|>",
"<|startoflm|>",
"<|startofprev|>",
"<|nospeech|>",
"<|notimestamps|>",
]
# these are special tokens, not normalized
language_tokens = [f"<|{k}|>" for k in list(LANGUAGES)[:num_languages]]
# These are not special but normalized
timestamp_tokens = [("<|%.2f|>" % (i * time_precision)) for i in range(1500 + 1)]
vocab, merges = convert_tiktoken_bpe_to_hf(tiktoken_tokenizer_path)
with tempfile.TemporaryDirectory() as tmpdirname:
vocab_file = f"{tmpdirname}/vocab.json"
merge_file = f"{tmpdirname}/merges.txt"
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
with open(merge_file, "w", encoding="utf-8") as writer:
writer.write("#version: 0.2\n")
for bpe_tokens in merges:
writer.write(bpe_tokens + "\n")
hf_tokenizer = WhisperTokenizer(vocab_file, merge_file)
hf_tokenizer.add_tokens(start_of_transcript + language_tokens + control_tokens, special_tokens=True)
hf_tokenizer.add_tokens(timestamp_tokens, special_tokens=False)
return hf_tokenizer
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# # Required parameters
parser.add_argument("--checkpoint_path", type=str, help="Path to the downloaded checkpoints")
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument(
"--convert_preprocessor",
type=bool,
default=False,
help="Whether or not the preprocessor (tokenizer + feature extractor) should be converted along with the model.",
)
args = parser.parse_args()
model, is_multilingual, num_languages = convert_openai_whisper_to_tfms(
args.checkpoint_path, args.pytorch_dump_folder_path
)
if args.convert_preprocessor:
try:
if not _is_package_available("tiktoken"):
raise ModuleNotFoundError(
"""`tiktoken` is not installed, use `pip install tiktoken` to convert the tokenizer"""
)
except Exception as e:
print(e)
else:
from tiktoken.load import load_tiktoken_bpe
tokenizer = convert_tiktoken_to_hf(is_multilingual, num_languages)
feature_extractor = WhisperFeatureExtractor(
feature_size=model.config.num_mel_bins,
# the rest of default parameters are the same as hardcoded in openai/whisper
)
processor = WhisperProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
processor.save_pretrained(args.pytorch_dump_folder_path)
# save fast tokenizer as well
fast_tokenizer = WhisperTokenizerFast.from_pretrained(args.pytorch_dump_folder_path)
fast_tokenizer.save_pretrained(args.pytorch_dump_folder_path, legacy_format=False)
model.save_pretrained(args.pytorch_dump_folder_path)
|