Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2022 The OpenAI Authors and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""TensorFlow Whisper model.""" | |
from __future__ import annotations | |
import math | |
import random | |
from typing import Dict, List, Optional, Tuple, Union | |
import numpy as np | |
import tensorflow as tf | |
from ...activations_tf import get_tf_activation | |
from ...generation.configuration_utils import GenerationConfig | |
from ...generation.tf_logits_process import TFLogitsProcessorList | |
from ...modeling_tf_outputs import ( | |
TFBaseModelOutput, | |
TFBaseModelOutputWithPastAndCrossAttentions, | |
TFSeq2SeqLMOutput, | |
TFSeq2SeqModelOutput, | |
) | |
from ...modeling_tf_utils import ( | |
TFCausalLanguageModelingLoss, | |
TFModelInputType, | |
TFPreTrainedModel, | |
keras, | |
keras_serializable, | |
unpack_inputs, | |
) | |
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax | |
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings | |
from .configuration_whisper import WhisperConfig | |
from .tokenization_whisper import TASK_IDS, TO_LANGUAGE_CODE | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = "WhisperConfig" | |
LARGE_NEGATIVE = -1e8 | |
def sinusoidal_embedding_init(shape, dtype=tf.float32) -> tf.Tensor: | |
"""Returns sinusoids for positional embedding""" | |
length, channels = shape | |
if channels % 2 != 0: | |
raise ValueError( | |
f"Number of channels has to be divisible by 2 for sinusoidal positional embeddings, got {channels} channels." | |
) | |
log_timescale_increment = math.log(10000) / (channels // 2 - 1) | |
inv_timescales = tf.exp(-log_timescale_increment * tf.range(channels // 2, dtype=tf.float32)) | |
scaled_time = tf.reshape(tf.range(length, dtype=tf.float32), (-1, 1)) * tf.reshape(inv_timescales, (1, -1)) | |
return tf.cast(tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1), dtype) | |
# Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right | |
def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): | |
pad_token_id = tf.cast(pad_token_id, input_ids.dtype) | |
decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) | |
start_tokens = tf.fill( | |
(shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype) | |
) | |
shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) | |
# replace possible -100 values in labels by `pad_token_id` | |
shifted_input_ids = tf.where( | |
shifted_input_ids == -100, | |
tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)), | |
shifted_input_ids, | |
) | |
# "Verify that `labels` has only positive values and -100" | |
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) | |
# Make sure the assertion op is called by wrapping the result in an identity no-op | |
with tf.control_dependencies([assert_gte0]): | |
shifted_input_ids = tf.identity(shifted_input_ids) | |
return shifted_input_ids | |
# Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask | |
def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): | |
""" | |
Make causal mask used for bi-directional self-attention. | |
""" | |
bsz = input_ids_shape[0] | |
tgt_len = input_ids_shape[1] | |
mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE | |
mask_cond = tf.range(shape_list(mask)[-1]) | |
mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask) | |
if past_key_values_length > 0: | |
mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) | |
return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) | |
# Copied from transformers.models.bart.modeling_tf_bart._expand_mask | |
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): | |
""" | |
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. | |
""" | |
src_len = shape_list(mask)[1] | |
tgt_len = tgt_len if tgt_len is not None else src_len | |
one_cst = tf.constant(1.0) | |
mask = tf.cast(mask, dtype=one_cst.dtype) | |
expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) | |
return (one_cst - expanded_mask) * LARGE_NEGATIVE | |
class TFWhisperPositionalEmbedding(keras.layers.Layer): | |
def __init__( | |
self, | |
num_positions: int, | |
embedding_dim: int, | |
padding_idx: Optional[int] = None, | |
embedding_initializer=None, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.num_positions = num_positions | |
self.embedding_dim = embedding_dim | |
self.padding_idx = padding_idx | |
self.embedding_initializer = keras.initializers.get(embedding_initializer) | |
def build(self, input_shape): | |
self.weight = self.add_weight( | |
name="weight", | |
shape=[self.num_positions, self.embedding_dim], | |
initializer=self.embedding_initializer, | |
trainable=True, | |
) | |
super().build(input_shape) | |
def call(self, input_ids, past_key_values_length=0): | |
past_key_values_length = tf.cast(past_key_values_length, tf.int32) | |
gather_indices = tf.range(tf.shape(input_ids)[1], delta=1) + past_key_values_length | |
return tf.gather(self.weight, gather_indices) | |
class TFWhisperAttention(keras.layers.Layer): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__( | |
self, | |
embed_dim: int, | |
num_heads: int, | |
dropout: float = 0.0, | |
is_decoder: bool = False, | |
bias: bool = True, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.dropout = keras.layers.Dropout(dropout) | |
self.head_dim = embed_dim // num_heads | |
if (self.head_dim * num_heads) != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" | |
f" and `num_heads`: {num_heads})." | |
) | |
self.scaling = self.head_dim**-0.5 | |
self.is_decoder = is_decoder | |
self.k_proj = keras.layers.Dense(embed_dim, use_bias=False, name="k_proj") | |
self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") | |
self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") | |
self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") | |
# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention._shape with BART->whisper | |
def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): | |
return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) | |
# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention.call with BART->whisper | |
def call( | |
self, | |
hidden_states: tf.Tensor, | |
key_value_states: tf.Tensor | None = None, | |
past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, | |
attention_mask: tf.Tensor | None = None, | |
layer_head_mask: tf.Tensor | None = None, | |
training: Optional[bool] = False, | |
) -> Tuple[tf.Tensor, tf.Tensor | None]: | |
"""Input shape: Batch x Time x Channel""" | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
bsz, tgt_len, embed_dim = shape_list(hidden_states) | |
# get query proj | |
query_states = self.q_proj(hidden_states) * self.scaling | |
# get key, value proj | |
if is_cross_attention and past_key_value is not None: | |
# reuse k,v, cross_attentions | |
key_states = past_key_value[0] | |
value_states = past_key_value[1] | |
elif is_cross_attention: | |
# cross_attentions | |
key_states = self._shape(self.k_proj(key_value_states), -1, bsz) | |
value_states = self._shape(self.v_proj(key_value_states), -1, bsz) | |
elif past_key_value is not None: | |
# reuse k, v, self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
key_states = tf.concat([past_key_value[0], key_states], axis=2) | |
value_states = tf.concat([past_key_value[1], value_states], axis=2) | |
else: | |
# self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
if self.is_decoder: | |
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. | |
# Further calls to cross_attention layer can then reuse all cross-attention | |
# key/value_states (first "if" case) | |
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of | |
# all previous decoder key/value_states. Further calls to uni-directional self-attention | |
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
# if encoder bi-directional self-attention `past_key_value` is always `None` | |
past_key_value = (key_states, value_states) | |
proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) | |
key_states = tf.reshape(key_states, proj_shape) | |
value_states = tf.reshape(value_states, proj_shape) | |
src_len = shape_list(key_states)[1] | |
attn_weights = tf.matmul(query_states, key_states, transpose_b=True) | |
tf.debugging.assert_equal( | |
shape_list(attn_weights), | |
[bsz * self.num_heads, tgt_len, src_len], | |
message=( | |
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" | |
f" {shape_list(attn_weights)}" | |
), | |
) | |
if attention_mask is not None: | |
tf.debugging.assert_equal( | |
shape_list(attention_mask), | |
[bsz, 1, tgt_len, src_len], | |
message=( | |
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" | |
f" {shape_list(attention_mask)}" | |
), | |
) | |
attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) | |
attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask | |
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) | |
attn_weights = stable_softmax(attn_weights, axis=-1) | |
if layer_head_mask is not None: | |
tf.debugging.assert_equal( | |
shape_list(layer_head_mask), | |
[self.num_heads], | |
message=( | |
f"Head mask for a single layer should be of size {(self.num_heads)}, but is" | |
f" {shape_list(layer_head_mask)}" | |
), | |
) | |
attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( | |
attn_weights, (bsz, self.num_heads, tgt_len, src_len) | |
) | |
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) | |
attn_probs = self.dropout(attn_weights, training=training) | |
attn_output = tf.matmul(attn_probs, value_states) | |
tf.debugging.assert_equal( | |
shape_list(attn_output), | |
[bsz * self.num_heads, tgt_len, self.head_dim], | |
message=( | |
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" | |
f" {shape_list(attn_output)}" | |
), | |
) | |
attn_output = tf.transpose( | |
tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) | |
) | |
attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) | |
attn_output = self.out_proj(attn_output) | |
attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) | |
return attn_output, attn_weights, past_key_value | |
def build(self, input_shape=None): | |
if self.built: | |
return | |
self.built = True | |
if getattr(self, "k_proj", None) is not None: | |
with tf.name_scope(self.k_proj.name): | |
self.k_proj.build([None, None, self.embed_dim]) | |
if getattr(self, "v_proj", None) is not None: | |
with tf.name_scope(self.v_proj.name): | |
self.v_proj.build([None, None, self.embed_dim]) | |
if getattr(self, "q_proj", None) is not None: | |
with tf.name_scope(self.q_proj.name): | |
self.q_proj.build([None, None, self.embed_dim]) | |
if getattr(self, "out_proj", None) is not None: | |
with tf.name_scope(self.out_proj.name): | |
self.out_proj.build([None, None, self.embed_dim]) | |
# Copied from transformers.models.speech_to_text.modeling_tf_speech_to_text.TFSpeech2TextEncoderLayer with Speech2Text->Whisper | |
class TFWhisperEncoderLayer(keras.layers.Layer): | |
def __init__(self, config: WhisperConfig, **kwargs): | |
super().__init__(**kwargs) | |
self.embed_dim = config.d_model | |
self.self_attn = TFWhisperAttention( | |
self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn" | |
) | |
self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") | |
self.dropout = keras.layers.Dropout(config.dropout) | |
self.activation_fn = get_tf_activation(config.activation_function) | |
self.activation_dropout = keras.layers.Dropout(config.activation_dropout) | |
self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1") | |
self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") | |
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") | |
self.config = config | |
def call( | |
self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, layer_head_mask: tf.Tensor, training: bool = False | |
): | |
""" | |
Args: | |
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`tf.Tensor`): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size | |
`(encoder_attention_heads,)` | |
""" | |
residual = hidden_states | |
hidden_states = self.self_attn_layer_norm(hidden_states) | |
hidden_states, self_attn_weights, _ = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
layer_head_mask=layer_head_mask, | |
training=training, | |
) | |
tf.debugging.assert_equal( | |
shape_list(hidden_states), | |
shape_list(residual), | |
message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", | |
) | |
hidden_states = self.dropout(hidden_states, training=training) | |
hidden_states = residual + hidden_states | |
residual = hidden_states | |
hidden_states = self.final_layer_norm(hidden_states) | |
hidden_states = self.activation_fn(self.fc1(hidden_states)) | |
hidden_states = self.activation_dropout(hidden_states, training=training) | |
hidden_states = self.fc2(hidden_states) | |
hidden_states = self.dropout(hidden_states, training=training) | |
hidden_states = residual + hidden_states | |
return hidden_states, self_attn_weights | |
def build(self, input_shape=None): | |
if self.built: | |
return | |
self.built = True | |
if getattr(self, "self_attn", None) is not None: | |
with tf.name_scope(self.self_attn.name): | |
self.self_attn.build(None) | |
if getattr(self, "self_attn_layer_norm", None) is not None: | |
with tf.name_scope(self.self_attn_layer_norm.name): | |
self.self_attn_layer_norm.build([None, None, self.embed_dim]) | |
if getattr(self, "fc1", None) is not None: | |
with tf.name_scope(self.fc1.name): | |
self.fc1.build([None, None, self.embed_dim]) | |
if getattr(self, "fc2", None) is not None: | |
with tf.name_scope(self.fc2.name): | |
self.fc2.build([None, None, self.config.encoder_ffn_dim]) | |
if getattr(self, "final_layer_norm", None) is not None: | |
with tf.name_scope(self.final_layer_norm.name): | |
self.final_layer_norm.build([None, None, self.embed_dim]) | |
# Copied from transformers.models.speech_to_text.modeling_tf_speech_to_text.TFSpeech2TextDecoderLayer with Speech2Text->Whisper | |
class TFWhisperDecoderLayer(keras.layers.Layer): | |
def __init__(self, config: WhisperConfig, **kwargs): | |
super().__init__(**kwargs) | |
self.embed_dim = config.d_model | |
self.self_attn = TFWhisperAttention( | |
embed_dim=self.embed_dim, | |
num_heads=config.decoder_attention_heads, | |
dropout=config.attention_dropout, | |
name="self_attn", | |
is_decoder=True, | |
) | |
self.dropout = keras.layers.Dropout(config.dropout) | |
self.activation_fn = get_tf_activation(config.activation_function) | |
self.activation_dropout = keras.layers.Dropout(config.activation_dropout) | |
self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") | |
self.encoder_attn = TFWhisperAttention( | |
self.embed_dim, | |
config.decoder_attention_heads, | |
dropout=config.attention_dropout, | |
name="encoder_attn", | |
is_decoder=True, | |
) | |
self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") | |
self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1") | |
self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") | |
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") | |
self.config = config | |
def call( | |
self, | |
hidden_states, | |
attention_mask: tf.Tensor | None = None, | |
encoder_hidden_states: tf.Tensor | None = None, | |
encoder_attention_mask: tf.Tensor | None = None, | |
layer_head_mask: tf.Tensor | None = None, | |
cross_attn_layer_head_mask: tf.Tensor | None = None, | |
past_key_value: Tuple[tf.Tensor] | None = None, | |
training=False, | |
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: | |
""" | |
Args: | |
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`tf.Tensor`): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
encoder_hidden_states (`tf.Tensor`): | |
cross attention input to the layer of shape `(batch, seq_len, embed_dim)` | |
encoder_attention_mask (`tf.Tensor`): encoder attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size | |
`(decoder_attention_heads,)` | |
cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module. | |
`(decoder_attention_heads,)` | |
past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states | |
""" | |
residual = hidden_states | |
hidden_states = self.self_attn_layer_norm(hidden_states) | |
# Self Attention | |
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2 | |
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None | |
# add present self-attn cache to positions 1,2 of present_key_value tuple | |
hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
hidden_states=hidden_states, | |
past_key_value=self_attn_past_key_value, | |
attention_mask=attention_mask, | |
layer_head_mask=layer_head_mask, | |
training=training, | |
) | |
hidden_states = self.dropout(hidden_states, training=training) | |
hidden_states = residual + hidden_states | |
# Cross-Attention Block | |
cross_attn_present_key_value = None | |
cross_attn_weights = None | |
if encoder_hidden_states is not None: | |
residual = hidden_states | |
hidden_states = self.encoder_attn_layer_norm(hidden_states) | |
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple | |
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None | |
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( | |
hidden_states=hidden_states, | |
key_value_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
layer_head_mask=cross_attn_layer_head_mask, | |
past_key_value=cross_attn_past_key_value, | |
training=training, | |
) | |
hidden_states = self.dropout(hidden_states, training=training) | |
hidden_states = residual + hidden_states | |
# add cross-attn to positions 3,4 of present_key_value tuple | |
present_key_value = present_key_value + cross_attn_present_key_value | |
# Fully Connected | |
residual = hidden_states | |
hidden_states = self.final_layer_norm(hidden_states) | |
hidden_states = self.activation_fn(self.fc1(hidden_states)) | |
hidden_states = self.activation_dropout(hidden_states, training=training) | |
hidden_states = self.fc2(hidden_states) | |
hidden_states = self.dropout(hidden_states, training=training) | |
hidden_states = residual + hidden_states | |
return ( | |
hidden_states, | |
self_attn_weights, | |
cross_attn_weights, | |
present_key_value, | |
) | |
def build(self, input_shape=None): | |
if self.built: | |
return | |
self.built = True | |
if getattr(self, "self_attn", None) is not None: | |
with tf.name_scope(self.self_attn.name): | |
self.self_attn.build(None) | |
if getattr(self, "self_attn_layer_norm", None) is not None: | |
with tf.name_scope(self.self_attn_layer_norm.name): | |
self.self_attn_layer_norm.build([None, None, self.embed_dim]) | |
if getattr(self, "encoder_attn", None) is not None: | |
with tf.name_scope(self.encoder_attn.name): | |
self.encoder_attn.build(None) | |
if getattr(self, "encoder_attn_layer_norm", None) is not None: | |
with tf.name_scope(self.encoder_attn_layer_norm.name): | |
self.encoder_attn_layer_norm.build([None, None, self.embed_dim]) | |
if getattr(self, "fc1", None) is not None: | |
with tf.name_scope(self.fc1.name): | |
self.fc1.build([None, None, self.embed_dim]) | |
if getattr(self, "fc2", None) is not None: | |
with tf.name_scope(self.fc2.name): | |
self.fc2.build([None, None, self.config.decoder_ffn_dim]) | |
if getattr(self, "final_layer_norm", None) is not None: | |
with tf.name_scope(self.final_layer_norm.name): | |
self.final_layer_norm.build([None, None, self.embed_dim]) | |
class TFWhisperPreTrainedModel(TFPreTrainedModel): | |
config_class = WhisperConfig | |
base_model_prefix = "model" | |
main_input_name = "input_features" | |
def _get_feat_extract_output_lengths(self, input_lengths: tf.Tensor) -> int: | |
""" | |
Computes the output length of the convolutional layers | |
""" | |
input_lengths = (input_lengths - 1) // 2 + 1 | |
return input_lengths | |
def dummy_inputs(self) -> Dict[str, tf.Tensor]: | |
""" | |
Dummy inputs to build the network. | |
Returns: | |
`Dict[str, tf.Tensor]`: The dummy inputs. | |
""" | |
return { | |
self.main_input_name: tf.random.uniform( | |
[1, self.config.num_mel_bins, self.config.max_source_positions * 2 - 1], dtype=tf.float32 | |
), | |
"decoder_input_ids": tf.constant([[1, 3]], dtype=tf.int32), | |
} | |
def input_signature(self): | |
return { | |
"input_features": tf.TensorSpec((None, self.config.num_mel_bins, None), tf.float32, name="input_features"), | |
"decoder_input_ids": tf.TensorSpec((None, None), tf.int32, name="decoder_input_ids"), | |
"decoder_attention_mask": tf.TensorSpec((None, None), tf.int32, name="decoder_attention_mask"), | |
} | |
WHISPER_START_DOCSTRING = r""" | |
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it | |
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`WhisperConfig`]): | |
Model configuration class with all the parameters of the model. Initializing with a config file does not | |
load the weights associated with the model, only the configuration. Check out the | |
[`~TFPreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
WHISPER_INPUTS_DOCSTRING = r""" | |
Args: | |
input_features (`tf.Tensor` of shape `(batch_size, feature_size, sequence_length)`): | |
Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be obtained | |
by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* | |
via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the | |
[`AutoFeatureExtractor`] should be used for extracting the fbank features, padding and conversion into a | |
tensor of type `tf.Tensor`. See [`~WhisperFeatureExtractor.__call__`] | |
decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Indices of decoder input sequence tokens in the vocabulary. | |
Indices can be obtained using [`SpeechToTextTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are decoder input IDs?](../glossary#decoder-input-ids) | |
SpeechToText uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If | |
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | |
`past_key_values`). | |
decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also | |
be used by default. | |
If you want to change padding behavior, you should read | |
[`modeling_whisper._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the | |
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. | |
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
encoder_outputs (`tuple(tuple(tf.Tensor)`, *optional*): | |
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) | |
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of | |
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. | |
past_key_values (`tuple(tuple(tf.Tensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(tf.Tensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | |
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
decoder_inputs_embeds (`tf.Tensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded | |
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be | |
input (see `past_key_values`). This is useful if you want more control over how to convert | |
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class TFWhisperEncoder(keras.layers.Layer): | |
config_class = WhisperConfig | |
""" | |
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a | |
[`TFWhisperEncoderLayer`]. | |
Args: | |
config: WhisperConfig | |
embed_tokens (TFWhisperEmbedding): output embedding | |
""" | |
def __init__(self, config: WhisperConfig, **kwargs): | |
super().__init__(**kwargs) | |
self.config = config | |
self.layerdrop = config.encoder_layerdrop | |
self.embed_dim = config.d_model | |
self.num_mel_bins = config.num_mel_bins | |
self.padding_idx = config.pad_token_id | |
self.max_source_positions = config.max_source_positions | |
self.embed_scale = math.sqrt(self.embed_dim) if config.scale_embedding else 1.0 | |
# Padding is added in call() to match the PyTorch implementation | |
self.conv1 = keras.layers.Conv1D(self.embed_dim, kernel_size=3, strides=1, padding="valid", name="conv1") | |
self.conv2 = keras.layers.Conv1D(self.embed_dim, kernel_size=3, strides=2, padding="valid", name="conv2") | |
self.embed_positions = TFWhisperPositionalEmbedding( | |
num_positions=self.max_source_positions, | |
embedding_dim=self.embed_dim, | |
embedding_initializer=sinusoidal_embedding_init, | |
name="embed_positions", | |
) | |
self.embed_positions.trainable = False | |
self.encoder_layers = [TFWhisperEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)] | |
self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") | |
self.dropout = keras.layers.Dropout(config.dropout) | |
def call( | |
self, | |
input_features=None, | |
head_mask=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
training=False, | |
): | |
r""" | |
Args: | |
input_features (`tf.Tensor` of shape `(batch_size, feature_size, sequence_length)`): | |
Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be | |
obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a | |
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into | |
`input_features`, the [`AutoFeatureExtractor`] should be used for extracting the fbank features, | |
padding and conversion into a tensor of type `tf.Tensor`. See [`~WhisperFeatureExtractor.__call__`] | |
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
for more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# TF 2.0 layers can't use channels first format when running on CPU. | |
input_features = tf.transpose(input_features, perm=(0, 2, 1)) | |
input_features = tf.pad(input_features, [[0, 0], [1, 1], [0, 0]]) | |
inputs_embeds = keras.activations.gelu(self.conv1(input_features)) | |
inputs_embeds = tf.pad(inputs_embeds, [[0, 0], [1, 1], [0, 0]]) | |
inputs_embeds = keras.activations.gelu(self.conv2(inputs_embeds)) | |
inputs_embeds = tf.transpose(inputs_embeds, perm=(0, 1, 2)) | |
embed_pos = self.embed_positions(input_ids=tf.zeros((1, self.max_source_positions), dtype=tf.int32)) | |
hidden_states = inputs_embeds + embed_pos | |
hidden_states = self.dropout(hidden_states, training=training) | |
encoder_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
# check if head_mask has a correct number of layers specified if desired | |
if head_mask is not None: | |
tf.debugging.assert_equal( | |
shape_list(head_mask)[0], | |
len(self.encoder_layers), | |
message=( | |
f"The head_mask should be specified for {len(self.encoder_layers)} layers, but it is for" | |
f" {shape_list(head_mask)[0]}." | |
), | |
) | |
for idx, encoder_layer in enumerate(self.encoder_layers): | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
dropout_probability = random.uniform(0, 1) | |
if training and (dropout_probability < self.layerdrop): # skip the layer | |
continue | |
hidden_states, attn = encoder_layer( | |
hidden_states, | |
None, | |
layer_head_mask=(head_mask[idx] if head_mask is not None else None), | |
training=training, | |
) | |
if output_attentions: | |
all_attentions += (attn,) | |
hidden_states = self.layer_norm(hidden_states) | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | |
return TFBaseModelOutput( | |
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions | |
) | |
def build(self, input_shape=None): | |
if self.built: | |
return | |
self.built = True | |
if getattr(self, "conv1", None) is not None: | |
with tf.name_scope(self.conv1.name): | |
self.conv1.build([None, None, self.num_mel_bins]) | |
if getattr(self, "conv2", None) is not None: | |
with tf.name_scope(self.conv2.name): | |
self.conv2.build([None, None, self.embed_dim]) | |
if getattr(self, "embed_positions", None) is not None: | |
with tf.name_scope(self.embed_positions.name): | |
self.embed_positions.build(None) | |
if getattr(self, "layer_norm", None) is not None: | |
with tf.name_scope(self.layer_norm.name): | |
self.layer_norm.build([None, None, self.config.d_model]) | |
if getattr(self, "encoder_layers", None) is not None: | |
for layer in self.encoder_layers: | |
with tf.name_scope(layer.name): | |
layer.build(None) | |
class TFWhisperDecoder(keras.layers.Layer): | |
config_class = WhisperConfig | |
""" | |
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFWhisperDecoderLayer`] | |
Args: | |
config: WhisperConfig | |
""" | |
def __init__(self, config: WhisperConfig, **kwargs): | |
super().__init__(**kwargs) | |
self.config = config | |
self.dropout = keras.layers.Dropout(config.dropout) | |
self.layerdrop = config.decoder_layerdrop | |
self.padding_idx = config.pad_token_id | |
self.max_target_positions = config.max_target_positions | |
self.max_source_positions = config.max_source_positions | |
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 | |
self.embed_tokens = keras.layers.Embedding( | |
input_dim=config.vocab_size, | |
output_dim=config.d_model, | |
embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std), | |
name="embed_tokens", | |
) | |
self.embed_positions = TFWhisperPositionalEmbedding( | |
self.max_target_positions, config.d_model, name="embed_positions" | |
) | |
self.decoder_layers = [TFWhisperDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] | |
self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, value): | |
self.embed_tokens = value | |
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, past_key_values_length): | |
# create causal mask | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
batch_size, seq_len = input_shape[0], input_shape[1] | |
combined_attention_mask = tf.cond( | |
tf.math.greater(seq_len, 1), | |
lambda: _make_causal_mask(input_shape, past_key_values_length=past_key_values_length), | |
lambda: _expand_mask(tf.ones((batch_size, seq_len + past_key_values_length)), tgt_len=seq_len), | |
) | |
if attention_mask is not None: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
expanded_attn_mask = _expand_mask(attention_mask, tgt_len=input_shape[-1]) | |
combined_attention_mask = ( | |
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask | |
) | |
return combined_attention_mask | |
def call( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
position_ids=None, | |
encoder_hidden_states=None, | |
head_mask=None, | |
cross_attn_head_mask=None, | |
past_key_values=None, | |
inputs_embeds=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
training=False, | |
): | |
r""" | |
Args: | |
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you | |
provide it. | |
Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the | |
range `[0, config.max_position_embeddings - 1]`. | |
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): | |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention | |
of the decoder. | |
head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention | |
on hidden heads. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
past_key_values (`tuple(tuple(tf.Tensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(tf.Tensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | |
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the | |
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those | |
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of | |
all `decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
than the model's internal embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
for more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# retrieve input_ids and inputs_embeds | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") | |
elif input_ids is not None: | |
input_shape = tf.shape(input_ids) | |
input_ids = tf.reshape(input_ids, (-1, input_shape[-1])) | |
elif inputs_embeds is not None: | |
input_shape = tf.shape(inputs_embeds)[:-1] | |
else: | |
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") | |
# past_key_values_length | |
past_key_values_length = tf.shape(past_key_values[0][0])[2] if past_key_values is not None else 0 | |
if inputs_embeds is None: | |
check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) | |
inputs_embeds = self.embed_tokens(input_ids) | |
attention_mask = self._prepare_decoder_attention_mask(attention_mask, input_shape, past_key_values_length) | |
# embed positions | |
filled_past_positions = past_key_values_length if position_ids is None else position_ids[0, -1] | |
positions = self.embed_positions(input_ids, past_key_values_length=filled_past_positions) | |
hidden_states = inputs_embeds + positions | |
hidden_states = self.dropout(hidden_states, training=training) | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None | |
next_decoder_cache = () if use_cache else None | |
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired | |
for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: | |
if attn_mask is not None: | |
tf.debugging.assert_equal( | |
shape_list(attn_mask)[0], | |
len(self.decoder_layers), | |
message=( | |
f"The {attn_mask_name} should be specified for {len(self.decoder_layers)} layers, but it is" | |
f" for {shape_list(attn_mask)[0]}." | |
), | |
) | |
for idx, decoder_layer in enumerate(self.decoder_layers): | |
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
dropout_probability = random.uniform(0, 1) | |
if training and (dropout_probability < self.layerdrop): | |
continue | |
past_key_value = past_key_values[idx] if past_key_values is not None else None | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
layer_head_mask=(head_mask[idx] if head_mask is not None else None), | |
cross_attn_layer_head_mask=(cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None), | |
past_key_value=past_key_value, | |
training=training, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache += (layer_outputs[3],) | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
if encoder_hidden_states is not None: | |
all_cross_attentions += (layer_outputs[2],) | |
hidden_states = self.layer_norm(hidden_states) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
next_cache = next_decoder_cache if use_cache else None | |
if not return_dict: | |
return tuple( | |
v | |
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] | |
if v is not None | |
) | |
return TFBaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
cross_attentions=all_cross_attentions, | |
) | |
def build(self, input_shape=None): | |
if self.built: | |
return | |
self.built = True | |
if getattr(self, "embed_tokens", None) is not None: | |
with tf.name_scope(self.embed_tokens.name): | |
self.embed_tokens.build(None) | |
if getattr(self, "embed_positions", None) is not None: | |
with tf.name_scope(self.embed_positions.name): | |
self.embed_positions.build(None) | |
if getattr(self, "layer_norm", None) is not None: | |
with tf.name_scope(self.layer_norm.name): | |
self.layer_norm.build([None, None, self.config.d_model]) | |
if getattr(self, "decoder_layers", None) is not None: | |
for layer in self.decoder_layers: | |
with tf.name_scope(layer.name): | |
layer.build(None) | |
class TFWhisperMainLayer(keras.layers.Layer): | |
config_class = WhisperConfig | |
def __init__(self, config: WhisperConfig, **kwargs): | |
super().__init__(**kwargs) | |
self.config = config | |
self.encoder = TFWhisperEncoder(config, name="encoder") | |
self.decoder = TFWhisperDecoder(config, name="decoder") | |
def get_input_embeddings(self): | |
return self.decoder.embed_tokens | |
def set_input_embeddings(self, value): | |
self.decoder.embed_tokens = value | |
def get_encoder(self): | |
return self.encoder | |
def get_decoder(self): | |
return self.decoder | |
def call( | |
self, | |
input_features=None, | |
decoder_input_ids=None, | |
decoder_attention_mask=None, | |
decoder_position_ids=None, | |
head_mask=None, | |
decoder_head_mask=None, | |
cross_attn_head_mask=None, | |
encoder_outputs=None, | |
past_key_values=None, | |
decoder_inputs_embeds=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
training=False, | |
): | |
r""" | |
Returns: | |
Example: | |
```python | |
>>> import tensorflow as tf | |
>>> from transformers import TFWhisperModel, AutoFeatureExtractor | |
>>> from datasets import load_dataset | |
>>> model = TFWhisperModel.from_pretrained("openai/whisper-base") | |
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base") | |
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="tf") | |
>>> input_features = inputs.input_features | |
>>> decoder_input_ids = tf.convert_to_tensor([[1, 1]]) * model.config.decoder_start_token_id | |
>>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state | |
>>> list(last_hidden_state.shape) | |
[1, 2, 512] | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if encoder_outputs is None: | |
encoder_outputs = self.encoder( | |
input_features, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
training=training, | |
) | |
# If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True | |
elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput): | |
encoder_outputs = TFBaseModelOutput( | |
last_hidden_state=encoder_outputs[0], | |
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
) | |
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) | |
decoder_outputs = self.decoder( | |
input_ids=decoder_input_ids, | |
attention_mask=decoder_attention_mask, | |
position_ids=decoder_position_ids, | |
encoder_hidden_states=encoder_outputs[0], | |
head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=decoder_inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
training=training, | |
) | |
if not return_dict: | |
return decoder_outputs + encoder_outputs | |
return TFSeq2SeqModelOutput( | |
last_hidden_state=decoder_outputs.last_hidden_state, | |
past_key_values=decoder_outputs.past_key_values, | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
decoder_attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
encoder_hidden_states=encoder_outputs.hidden_states, | |
encoder_attentions=encoder_outputs.attentions, | |
) | |
def build(self, input_shape=None): | |
if self.built: | |
return | |
self.built = True | |
if getattr(self, "encoder", None) is not None: | |
with tf.name_scope(self.encoder.name): | |
self.encoder.build(None) | |
if getattr(self, "decoder", None) is not None: | |
with tf.name_scope(self.decoder.name): | |
self.decoder.build(None) | |
class TFWhisperModel(TFWhisperPreTrainedModel): | |
def __init__(self, config: WhisperConfig, **kwargs): | |
super().__init__(config, **kwargs) | |
self.model = TFWhisperMainLayer(config, name="model") | |
def get_input_embeddings(self): | |
return self.model.decoder.embed_tokens | |
def set_input_embeddings(self, value): | |
self.model.decoder.embed_tokens = value | |
def get_encoder(self): | |
return self.model.encoder | |
def get_decoder(self): | |
return self.model.decoder | |
def decoder(self): | |
return self.model.decoder | |
def encoder(self): | |
return self.model.encoder | |
def call( | |
self, | |
input_features: TFModelInputType | None = None, | |
decoder_input_ids: np.ndarray | tf.Tensor | None = None, | |
decoder_attention_mask: np.ndarray | tf.Tensor | None = None, | |
decoder_position_ids: np.ndarray | tf.Tensor | None = None, | |
head_mask: np.ndarray | tf.Tensor | None = None, | |
decoder_head_mask: np.ndarray | tf.Tensor | None = None, | |
cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, | |
encoder_outputs: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, | |
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, | |
decoder_inputs_embeds: Optional[Tuple[Union[np.ndarray, tf.Tensor]]] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
training: bool = False, | |
) -> Union[Tuple[tf.Tensor], TFSeq2SeqModelOutput]: | |
r""" | |
Returns: | |
Example: | |
```python | |
>>> import tensorflow as tf | |
>>> from transformers import TFWhisperModel, AutoFeatureExtractor | |
>>> from datasets import load_dataset | |
>>> model = TFWhisperModel.from_pretrained("openai/whisper-base") | |
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base") | |
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="tf") | |
>>> input_features = inputs.input_features | |
>>> decoder_input_ids = tf.convert_to_tensor([[1, 1]]) * model.config.decoder_start_token_id | |
>>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state | |
>>> list(last_hidden_state.shape) | |
[1, 2, 512] | |
```""" | |
outputs = self.model( | |
input_features=input_features, | |
decoder_input_ids=decoder_input_ids, | |
decoder_attention_mask=decoder_attention_mask, | |
decoder_position_ids=decoder_position_ids, | |
head_mask=head_mask, | |
decoder_head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
encoder_outputs=encoder_outputs, | |
past_key_values=past_key_values, | |
decoder_inputs_embeds=decoder_inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
training=training, | |
) | |
return outputs | |
def serving_output(self, output): | |
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None | |
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None | |
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None | |
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None | |
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None | |
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None | |
return TFSeq2SeqModelOutput( | |
last_hidden_state=output.last_hidden_state, | |
past_key_values=pkv, | |
decoder_hidden_states=dec_hs, | |
decoder_attentions=dec_attns, | |
cross_attentions=cross_attns, | |
encoder_last_hidden_state=output.encoder_last_hidden_state, | |
encoder_hidden_states=enc_hs, | |
encoder_attentions=enc_attns, | |
) | |
def build(self, input_shape=None): | |
if self.built: | |
return | |
self.built = True | |
if getattr(self, "model", None) is not None: | |
with tf.name_scope(self.model.name): | |
self.model.build(None) | |
class TFWhisperForConditionalGeneration(TFWhisperPreTrainedModel, TFCausalLanguageModelingLoss): | |
base_model_prefix = "model" | |
_keys_to_ignore_on_load_missing = [ | |
r"encoder.version", | |
r"decoder.version", | |
r"proj_out.weight", | |
] | |
_keys_to_ignore_on_save = [ | |
r"proj_out.weight", | |
] | |
def __init__(self, config: WhisperConfig, **kwargs): | |
super().__init__(config, **kwargs) | |
self.model = TFWhisperMainLayer(config, name="model") | |
def get_encoder(self): | |
return self.model.get_encoder() | |
def get_decoder(self): | |
return self.model.get_decoder() | |
def get_output_embeddings(self): | |
return self.get_input_embeddings() | |
def set_output_embeddings(self, value): | |
self.set_input_embeddings(value) | |
def resize_token_embeddings(self, new_num_tokens: int) -> keras.layers.Embedding: | |
new_embeddings = super().resize_token_embeddings(new_num_tokens) | |
return new_embeddings | |
def call( | |
self, | |
input_features: TFModelInputType | None = None, | |
decoder_input_ids: np.ndarray | tf.Tensor | None = None, | |
decoder_attention_mask: np.ndarray | tf.Tensor | None = None, | |
decoder_position_ids: np.ndarray | tf.Tensor | None = None, | |
head_mask: np.ndarray | tf.Tensor | None = None, | |
decoder_head_mask: np.ndarray | tf.Tensor | None = None, | |
cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, | |
encoder_outputs: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, | |
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, | |
decoder_inputs_embeds: Optional[Tuple[Union[np.ndarray, tf.Tensor]]] = None, | |
labels: np.ndarray | tf.Tensor | None = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
training: bool = False, | |
) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]: | |
r""" | |
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` | |
or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is | |
only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
Returns: | |
Example: | |
```python | |
>>> import tensorflow as tf | |
>>> from transformers import AutoProcessor, TFWhisperForConditionalGeneration | |
>>> from datasets import load_dataset | |
>>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en") | |
>>> model = TFWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en") | |
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="tf") | |
>>> input_features = inputs.input_features | |
>>> generated_ids = model.generate(input_features=input_features) | |
>>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
>>> transcription | |
' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.' | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if labels is not None: | |
if decoder_input_ids is None and decoder_inputs_embeds is None: | |
decoder_input_ids = shift_tokens_right( | |
labels, self.config.pad_token_id, self.config.decoder_start_token_id | |
) | |
outputs = self.model( | |
input_features, | |
decoder_input_ids=decoder_input_ids, | |
encoder_outputs=encoder_outputs, | |
decoder_attention_mask=decoder_attention_mask, | |
decoder_position_ids=decoder_position_ids, | |
head_mask=head_mask, | |
decoder_head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
past_key_values=past_key_values, | |
decoder_inputs_embeds=decoder_inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
training=training, | |
) | |
decoder_last_hidden_state = outputs[0] | |
# Decoder and encoder embeddings are tied | |
lm_logits = tf.matmul(decoder_last_hidden_state, self.get_output_embeddings().weights, transpose_b=True) | |
loss = None if labels is None else self.hf_compute_loss(labels, lm_logits) | |
if not return_dict: | |
output = (lm_logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return TFSeq2SeqLMOutput( | |
loss=loss, | |
logits=lm_logits, | |
past_key_values=outputs.past_key_values, | |
decoder_hidden_states=outputs.decoder_hidden_states, | |
decoder_attentions=outputs.decoder_attentions, | |
cross_attentions=outputs.cross_attentions, | |
encoder_last_hidden_state=outputs.encoder_last_hidden_state, | |
encoder_hidden_states=outputs.encoder_hidden_states, | |
encoder_attentions=outputs.encoder_attentions, | |
) | |
def generate( | |
self, | |
inputs: Optional[tf.Tensor] = None, | |
generation_config: Optional[GenerationConfig] = None, | |
logits_processor: Optional[TFLogitsProcessorList] = None, | |
seed: Optional[List[int]] = None, | |
return_timestamps: Optional[bool] = None, | |
task: Optional[str] = None, | |
language: Optional[str] = None, | |
is_multilingual: Optional[bool] = None, | |
prompt_ids: Optional[tf.Tensor] = None, | |
return_token_timestamps=None, | |
**kwargs, | |
): | |
r""" | |
Generates sequences of token ids for models with a language modeling head. | |
<Tip warning={true}> | |
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the | |
model's default generation configuration. You can override any `generation_config` by passing the corresponding | |
parameters to generate, e.g. `.generate(inputs, num_beams=4, do_sample=True)`. | |
For an overview of generation strategies and code examples, check out the [following | |
guide](../generation_strategies). | |
</Tip> | |
Parameters: | |
inputs (`tf.Tensor` of varying shape depending on the modality, *optional*): | |
The sequence used as a prompt for the generation or as model inputs to the encoder. If unset the method | |
initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` should of in | |
the format of `input_ids`. For encoder-decoder models *inputs* can represent any of `input_ids`, | |
`input_values`, `input_features`, or `pixel_values`. | |
generation_config (`~generation.GenerationConfig`, *optional*): | |
The generation configuration to be used as base parametrization for the generation call. `**kwargs` | |
passed to generate matching the attributes of `generation_config` will override them. If | |
`generation_config` is not provided, the default will be used, which had the following loading | |
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model | |
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s | |
default values, whose documentation should be checked to parameterize generation. | |
logits_processor (`LogitsProcessorList`, *optional*): | |
Custom logits processors that complement the default logits processors built from arguments and | |
generation config. If a logit processor is passed that is already created with the arguments or a | |
generation config an error is thrown. This feature is intended for advanced users. | |
seed (`List[int]`, *optional*): | |
Random seed to control sampling, containing two integers, used when `do_sample` is `True`. See the | |
`seed` argument from stateless functions in `tf.random`. | |
return_timestamps (`bool`, *optional*): | |
Whether to return the timestamps with the text. This enables the `TFWhisperTimestampsLogitsProcessor`. | |
task (`str`, *optional*): | |
Task to use for generation, either "translate" or "transcribe". The `model.config.forced_decoder_ids` | |
will be updated accordingly. | |
language (`str`, *optional*): | |
Language token to use for generation, can be either in the form of `<|en|>`, `en` or `english`. You can | |
find all the possible language tokens in the `model.generation_config.lang_to_id` dictionary. | |
is_multilingual (`bool`, *optional*): | |
Whether or not the model is multilingual. | |
prompt_ids (`tf.Tensor`, *optional*): | |
Rank-1 tensor of token IDs created by passing text to [`~WhisperProcessor.get_prompt_ids`] that is | |
provided as a prompt to each chunk. This can be used to provide or "prompt-engineer" a context for | |
transcription, e.g. custom vocabularies or proper nouns to make it more likely to predict those words | |
correctly. It cannot be used in conjunction with `decoder_start_token_id` as it overwrites this value. | |
return_token_timestamps (`bool`, *optional*): | |
Whether to return token-level timestamps with the text. This can be used with or without the | |
`return_timestamps` option. To get word-level timestamps, use the tokenizer to group the tokens into | |
words. | |
kwargs (`Dict[str, Any]`, *optional*): | |
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be | |
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder | |
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. | |
Return: | |
[`~utils.ModelOutput`] or `tf.Tensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when | |
`config.return_dict_in_generate=True`) or a `tf.Tensor`. | |
If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible | |
[`~utils.ModelOutput`] types are: | |
- [`~generation.TFGreedySearchDecoderOnlyOutput`], | |
- [`~generation.TFSampleDecoderOnlyOutput`], | |
- [`~generation.TFBeamSearchDecoderOnlyOutput`], | |
- [`~generation.TFBeamSampleDecoderOnlyOutput`] | |
If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible | |
[`~utils.ModelOutput`] types are: | |
- [`~generation.TFGreedySearchEncoderDecoderOutput`], | |
- [`~generation.TFSampleEncoderDecoderOutput`], | |
- [`~generation.TFBeamSearchEncoderDecoderOutput`], | |
- [`~generation.TFBeamSampleEncoderDecoderOutput`] | |
""" | |
if generation_config is None: | |
generation_config = self.generation_config | |
if return_timestamps is not None: | |
if not hasattr(generation_config, "no_timestamps_token_id"): | |
raise ValueError( | |
"You are trying to return timestamps, but the generation config is not properly set. " | |
"Make sure to initialize the generation config with the correct attributes that are needed such as `no_timestamps_token_id`. " | |
"For more details on how to generate the approtiate config, refer to https://github.com/huggingface/transformers/issues/21878#issuecomment-1451902363" | |
) | |
generation_config.return_timestamps = return_timestamps | |
else: | |
generation_config.return_timestamps = False | |
if language is not None: | |
language = language.lower() | |
generation_config.language = language | |
if task is not None: | |
generation_config.task = task | |
forced_decoder_ids = None | |
# Legacy code for backward compatibility | |
if hasattr(self.config, "forced_decoder_ids") and self.config.forced_decoder_ids is not None: | |
forced_decoder_ids = self.config.forced_decoder_ids | |
elif ( | |
hasattr(self.generation_config, "forced_decoder_ids") | |
and self.generation_config.forced_decoder_ids is not None | |
): | |
forced_decoder_ids = self.generation_config.forced_decoder_ids | |
else: | |
forced_decoder_ids = kwargs.get("forced_decoder_ids", None) | |
if task is not None or language is not None or (forced_decoder_ids is None and prompt_ids is not None): | |
forced_decoder_ids = [] | |
if hasattr(generation_config, "language"): | |
if generation_config.language in generation_config.lang_to_id.keys(): | |
language_token = generation_config.language | |
elif generation_config.language in TO_LANGUAGE_CODE.keys(): | |
language_token = f"<|{TO_LANGUAGE_CODE[generation_config.language]}|>" | |
elif generation_config.language in TO_LANGUAGE_CODE.values(): | |
language_token = f"<|{generation_config.language}|>" | |
else: | |
is_language_code = len(generation_config.language) == 2 | |
raise ValueError( | |
f"Unsupported language: {generation_config.language}. Language should be one of:" | |
f" {list(TO_LANGUAGE_CODE.values()) if is_language_code else list(TO_LANGUAGE_CODE.keys())}." | |
) | |
if language_token not in generation_config.lang_to_id: | |
raise ValueError( | |
f"{language_token} is not supported by this specific model as it is not in the `generation_config.lang_to_id`." | |
"(You should just add it to the generation config)" | |
) | |
forced_decoder_ids.append((1, generation_config.lang_to_id[language_token])) | |
else: | |
forced_decoder_ids.append((1, None)) # automatically detect the language | |
if hasattr(generation_config, "task"): | |
if generation_config.task in TASK_IDS: | |
forced_decoder_ids.append((2, generation_config.task_to_id[generation_config.task])) | |
else: | |
raise ValueError( | |
f"The `{generation_config.task}`task is not supported. The task should be one of `{TASK_IDS}`" | |
) | |
elif hasattr(generation_config, "task_to_id"): | |
forced_decoder_ids.append((2, generation_config.task_to_id["transcribe"])) # defaults to transcribe | |
if hasattr(generation_config, "no_timestamps_token_id") and not generation_config.return_timestamps: | |
idx = forced_decoder_ids[-1][0] + 1 if forced_decoder_ids else 1 | |
forced_decoder_ids.append((idx, generation_config.no_timestamps_token_id)) | |
if forced_decoder_ids is not None: | |
generation_config.forced_decoder_ids = forced_decoder_ids | |
if prompt_ids is not None: | |
if kwargs.get("decoder_start_token_id") is not None: | |
raise ValueError( | |
"When specifying `prompt_ids`, you cannot also specify `decoder_start_token_id` as it gets overwritten." | |
) | |
prompt_ids = prompt_ids.tolist() | |
decoder_start_token_id, *text_prompt_ids = prompt_ids | |
# Slicing the text prompt ids in a manner consistent with the OpenAI implementation | |
# to accommodate context space for the prefix (see https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/decoding.py#L599) | |
text_prompt_ids = text_prompt_ids[-self.config.max_length // 2 - 1 :] | |
# Set the decoder_start_token_id to <|startofprev|> | |
kwargs.update({"decoder_start_token_id": decoder_start_token_id}) | |
# Update the max generation length to include the prompt | |
specified_max_length = kwargs.pop("max_new_tokens", None) or kwargs.pop("max_length", None) | |
default_max_length = generation_config.max_new_tokens or generation_config.max_length | |
non_prompt_max_length = specified_max_length or default_max_length | |
kwargs["max_new_tokens"] = non_prompt_max_length + len(text_prompt_ids) | |
# Reformat the forced_decoder_ids to incorporate the prompt | |
non_prompt_forced_decoder_ids = ( | |
kwargs.pop("forced_decoder_ids", None) or generation_config.forced_decoder_ids | |
) | |
forced_decoder_ids = [ | |
*text_prompt_ids, | |
generation_config.decoder_start_token_id, | |
*[token for _rank, token in non_prompt_forced_decoder_ids], | |
] | |
forced_decoder_ids = [(rank + 1, token) for rank, token in enumerate(forced_decoder_ids)] | |
generation_config.forced_decoder_ids = forced_decoder_ids | |
# TODO: Implement `WhisperTimeStampLogitsProcessor`. | |
if generation_config.return_timestamps: | |
# logits_processor = [TFWhisperTimeStampLogitsProcessor(generation_config)] | |
raise ValueError("`TFWhisperForConditionalGeneration` doesn't support returning the timestamps yet.") | |
if return_token_timestamps: | |
kwargs["output_attentions"] = True | |
kwargs["return_dict_in_generate"] = True | |
if getattr(generation_config, "task", None) == "translate": | |
logger.warning("Token-level timestamps may not be reliable for task 'translate'.") | |
if not hasattr(generation_config, "alignment_heads"): | |
raise ValueError( | |
"Model generation config has no `alignment_heads`, token-level timestamps not available. " | |
"See https://gist.github.com/hollance/42e32852f24243b748ae6bc1f985b13a on how to add this property to the generation config." | |
) | |
outputs = super().generate( | |
inputs, | |
generation_config, | |
logits_processor, | |
**kwargs, | |
) | |
if return_token_timestamps and hasattr(generation_config, "alignment_heads"): | |
outputs["token_timestamps"] = self._extract_token_timestamps(outputs, generation_config.alignment_heads) | |
return outputs | |
def serving_output(self, output): | |
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None | |
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None | |
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None | |
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None | |
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None | |
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None | |
return TFSeq2SeqLMOutput( | |
logits=output.logits, | |
past_key_values=pkv, | |
decoder_hidden_states=dec_hs, | |
decoder_attentions=dec_attns, | |
cross_attentions=cross_attns, | |
encoder_last_hidden_state=output.encoder_last_hidden_state, | |
encoder_hidden_states=enc_hs, | |
encoder_attentions=enc_attns, | |
) | |
def prepare_inputs_for_generation( | |
self, | |
decoder_input_ids, | |
past_key_values=None, | |
use_cache=None, | |
encoder_outputs=None, | |
attention_mask=None, | |
decoder_attention_mask=None, | |
**kwargs, | |
): | |
# cut decoder_input_ids if past is used | |
if past_key_values is not None: | |
decoder_input_ids = decoder_input_ids[:, -1:] | |
if decoder_attention_mask is not None: # xla | |
decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:] | |
elif past_key_values is not None: # no xla + past | |
decoder_position_ids = past_key_values[0][0].shape[2] | |
else: # no xla + no past | |
decoder_position_ids = tf.range(decoder_input_ids.shape[1]) | |
decoder_position_ids = tf.broadcast_to(decoder_position_ids, decoder_input_ids.shape) | |
return { | |
"input_features": None, # Needs to be passed to make Keras.layer.__call__ happy | |
"encoder_outputs": encoder_outputs, | |
"past_key_values": past_key_values, | |
"decoder_input_ids": decoder_input_ids, | |
"use_cache": use_cache, | |
"decoder_attention_mask": decoder_attention_mask, | |
"decoder_position_ids": decoder_position_ids, | |
} | |
def build(self, input_shape=None): | |
if self.built: | |
return | |
self.built = True | |
if getattr(self, "model", None) is not None: | |
with tf.name_scope(self.model.name): | |
self.model.build(None) | |