File size: 84,765 Bytes
ffc786b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
# coding=utf-8
# Copyright 2022 The OpenAI Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TensorFlow Whisper model."""

from __future__ import annotations

import math
import random
from typing import Dict, List, Optional, Tuple, Union

import numpy as np
import tensorflow as tf

from ...activations_tf import get_tf_activation
from ...generation.configuration_utils import GenerationConfig
from ...generation.tf_logits_process import TFLogitsProcessorList
from ...modeling_tf_outputs import (
    TFBaseModelOutput,
    TFBaseModelOutputWithPastAndCrossAttentions,
    TFSeq2SeqLMOutput,
    TFSeq2SeqModelOutput,
)
from ...modeling_tf_utils import (
    TFCausalLanguageModelingLoss,
    TFModelInputType,
    TFPreTrainedModel,
    keras,
    keras_serializable,
    unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_whisper import WhisperConfig
from .tokenization_whisper import TASK_IDS, TO_LANGUAGE_CODE


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "WhisperConfig"


LARGE_NEGATIVE = -1e8


def sinusoidal_embedding_init(shape, dtype=tf.float32) -> tf.Tensor:
    """Returns sinusoids for positional embedding"""
    length, channels = shape
    if channels % 2 != 0:
        raise ValueError(
            f"Number of channels has to be divisible by 2 for sinusoidal positional embeddings, got {channels} channels."
        )
    log_timescale_increment = math.log(10000) / (channels // 2 - 1)
    inv_timescales = tf.exp(-log_timescale_increment * tf.range(channels // 2, dtype=tf.float32))
    scaled_time = tf.reshape(tf.range(length, dtype=tf.float32), (-1, 1)) * tf.reshape(inv_timescales, (1, -1))
    return tf.cast(tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1), dtype)


# Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right
def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int):
    pad_token_id = tf.cast(pad_token_id, input_ids.dtype)
    decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype)
    start_tokens = tf.fill(
        (shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype)
    )
    shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
    # replace possible -100 values in labels by `pad_token_id`
    shifted_input_ids = tf.where(
        shifted_input_ids == -100,
        tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)),
        shifted_input_ids,
    )

    # "Verify that `labels` has only positive values and -100"
    assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))

    # Make sure the assertion op is called by wrapping the result in an identity no-op
    with tf.control_dependencies([assert_gte0]):
        shifted_input_ids = tf.identity(shifted_input_ids)

    return shifted_input_ids


# Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask
def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
    """
    Make causal mask used for bi-directional self-attention.
    """
    bsz = input_ids_shape[0]
    tgt_len = input_ids_shape[1]
    mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE
    mask_cond = tf.range(shape_list(mask)[-1])

    mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask)

    if past_key_values_length > 0:
        mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)

    return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))


# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
    """
    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
    """
    src_len = shape_list(mask)[1]
    tgt_len = tgt_len if tgt_len is not None else src_len
    one_cst = tf.constant(1.0)
    mask = tf.cast(mask, dtype=one_cst.dtype)
    expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))

    return (one_cst - expanded_mask) * LARGE_NEGATIVE


class TFWhisperPositionalEmbedding(keras.layers.Layer):
    def __init__(
        self,
        num_positions: int,
        embedding_dim: int,
        padding_idx: Optional[int] = None,
        embedding_initializer=None,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.num_positions = num_positions
        self.embedding_dim = embedding_dim
        self.padding_idx = padding_idx
        self.embedding_initializer = keras.initializers.get(embedding_initializer)

    def build(self, input_shape):
        self.weight = self.add_weight(
            name="weight",
            shape=[self.num_positions, self.embedding_dim],
            initializer=self.embedding_initializer,
            trainable=True,
        )
        super().build(input_shape)

    def call(self, input_ids, past_key_values_length=0):
        past_key_values_length = tf.cast(past_key_values_length, tf.int32)
        gather_indices = tf.range(tf.shape(input_ids)[1], delta=1) + past_key_values_length
        return tf.gather(self.weight, gather_indices)


class TFWhisperAttention(keras.layers.Layer):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        dropout: float = 0.0,
        is_decoder: bool = False,
        bias: bool = True,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = keras.layers.Dropout(dropout)
        self.head_dim = embed_dim // num_heads

        if (self.head_dim * num_heads) != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
                f" and `num_heads`: {num_heads})."
            )
        self.scaling = self.head_dim**-0.5
        self.is_decoder = is_decoder

        self.k_proj = keras.layers.Dense(embed_dim, use_bias=False, name="k_proj")
        self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
        self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
        self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")

    # Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention._shape with BART->whisper
    def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
        return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))

    # Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention.call with BART->whisper
    def call(
        self,
        hidden_states: tf.Tensor,
        key_value_states: tf.Tensor | None = None,
        past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
        attention_mask: tf.Tensor | None = None,
        layer_head_mask: tf.Tensor | None = None,
        training: Optional[bool] = False,
    ) -> Tuple[tf.Tensor, tf.Tensor | None]:
        """Input shape: Batch x Time x Channel"""

        # if key_value_states are provided this layer is used as a cross-attention layer
        # for the decoder
        is_cross_attention = key_value_states is not None
        bsz, tgt_len, embed_dim = shape_list(hidden_states)

        # get query proj
        query_states = self.q_proj(hidden_states) * self.scaling
        # get key, value proj
        if is_cross_attention and past_key_value is not None:
            # reuse k,v, cross_attentions
            key_states = past_key_value[0]
            value_states = past_key_value[1]
        elif is_cross_attention:
            # cross_attentions
            key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
            value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
        elif past_key_value is not None:
            # reuse k, v, self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
            key_states = tf.concat([past_key_value[0], key_states], axis=2)
            value_states = tf.concat([past_key_value[1], value_states], axis=2)
        else:
            # self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

        if self.is_decoder:
            # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
            # Further calls to cross_attention layer can then reuse all cross-attention
            # key/value_states (first "if" case)
            # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
            # all previous decoder key/value_states. Further calls to uni-directional self-attention
            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
            # if encoder bi-directional self-attention `past_key_value` is always `None`
            past_key_value = (key_states, value_states)

        proj_shape = (bsz * self.num_heads, -1, self.head_dim)
        query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
        key_states = tf.reshape(key_states, proj_shape)
        value_states = tf.reshape(value_states, proj_shape)

        src_len = shape_list(key_states)[1]
        attn_weights = tf.matmul(query_states, key_states, transpose_b=True)

        tf.debugging.assert_equal(
            shape_list(attn_weights),
            [bsz * self.num_heads, tgt_len, src_len],
            message=(
                f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
                f" {shape_list(attn_weights)}"
            ),
        )

        if attention_mask is not None:
            tf.debugging.assert_equal(
                shape_list(attention_mask),
                [bsz, 1, tgt_len, src_len],
                message=(
                    f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
                    f" {shape_list(attention_mask)}"
                ),
            )

            attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
            attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
            attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))

        attn_weights = stable_softmax(attn_weights, axis=-1)

        if layer_head_mask is not None:
            tf.debugging.assert_equal(
                shape_list(layer_head_mask),
                [self.num_heads],
                message=(
                    f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
                    f" {shape_list(layer_head_mask)}"
                ),
            )

            attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
                attn_weights, (bsz, self.num_heads, tgt_len, src_len)
            )
            attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))

        attn_probs = self.dropout(attn_weights, training=training)
        attn_output = tf.matmul(attn_probs, value_states)

        tf.debugging.assert_equal(
            shape_list(attn_output),
            [bsz * self.num_heads, tgt_len, self.head_dim],
            message=(
                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
                f" {shape_list(attn_output)}"
            ),
        )

        attn_output = tf.transpose(
            tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
        )
        attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))

        attn_output = self.out_proj(attn_output)
        attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))

        return attn_output, attn_weights, past_key_value

    def build(self, input_shape=None):
        if self.built:
            return
        self.built = True
        if getattr(self, "k_proj", None) is not None:
            with tf.name_scope(self.k_proj.name):
                self.k_proj.build([None, None, self.embed_dim])
        if getattr(self, "v_proj", None) is not None:
            with tf.name_scope(self.v_proj.name):
                self.v_proj.build([None, None, self.embed_dim])
        if getattr(self, "q_proj", None) is not None:
            with tf.name_scope(self.q_proj.name):
                self.q_proj.build([None, None, self.embed_dim])
        if getattr(self, "out_proj", None) is not None:
            with tf.name_scope(self.out_proj.name):
                self.out_proj.build([None, None, self.embed_dim])


# Copied from transformers.models.speech_to_text.modeling_tf_speech_to_text.TFSpeech2TextEncoderLayer with Speech2Text->Whisper
class TFWhisperEncoderLayer(keras.layers.Layer):
    def __init__(self, config: WhisperConfig, **kwargs):
        super().__init__(**kwargs)
        self.embed_dim = config.d_model
        self.self_attn = TFWhisperAttention(
            self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn"
        )
        self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
        self.dropout = keras.layers.Dropout(config.dropout)
        self.activation_fn = get_tf_activation(config.activation_function)
        self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
        self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1")
        self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
        self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
        self.config = config

    def call(
        self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, layer_head_mask: tf.Tensor, training: bool = False
    ):
        """
        Args:
            hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`tf.Tensor`): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
                `(encoder_attention_heads,)`
        """
        residual = hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)
        hidden_states, self_attn_weights, _ = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            training=training,
        )

        tf.debugging.assert_equal(
            shape_list(hidden_states),
            shape_list(residual),
            message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}",
        )

        hidden_states = self.dropout(hidden_states, training=training)
        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = self.activation_dropout(hidden_states, training=training)
        hidden_states = self.fc2(hidden_states)
        hidden_states = self.dropout(hidden_states, training=training)
        hidden_states = residual + hidden_states

        return hidden_states, self_attn_weights

    def build(self, input_shape=None):
        if self.built:
            return
        self.built = True
        if getattr(self, "self_attn", None) is not None:
            with tf.name_scope(self.self_attn.name):
                self.self_attn.build(None)
        if getattr(self, "self_attn_layer_norm", None) is not None:
            with tf.name_scope(self.self_attn_layer_norm.name):
                self.self_attn_layer_norm.build([None, None, self.embed_dim])
        if getattr(self, "fc1", None) is not None:
            with tf.name_scope(self.fc1.name):
                self.fc1.build([None, None, self.embed_dim])
        if getattr(self, "fc2", None) is not None:
            with tf.name_scope(self.fc2.name):
                self.fc2.build([None, None, self.config.encoder_ffn_dim])
        if getattr(self, "final_layer_norm", None) is not None:
            with tf.name_scope(self.final_layer_norm.name):
                self.final_layer_norm.build([None, None, self.embed_dim])


# Copied from transformers.models.speech_to_text.modeling_tf_speech_to_text.TFSpeech2TextDecoderLayer with Speech2Text->Whisper
class TFWhisperDecoderLayer(keras.layers.Layer):
    def __init__(self, config: WhisperConfig, **kwargs):
        super().__init__(**kwargs)
        self.embed_dim = config.d_model

        self.self_attn = TFWhisperAttention(
            embed_dim=self.embed_dim,
            num_heads=config.decoder_attention_heads,
            dropout=config.attention_dropout,
            name="self_attn",
            is_decoder=True,
        )
        self.dropout = keras.layers.Dropout(config.dropout)
        self.activation_fn = get_tf_activation(config.activation_function)
        self.activation_dropout = keras.layers.Dropout(config.activation_dropout)

        self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
        self.encoder_attn = TFWhisperAttention(
            self.embed_dim,
            config.decoder_attention_heads,
            dropout=config.attention_dropout,
            name="encoder_attn",
            is_decoder=True,
        )
        self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm")
        self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1")
        self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
        self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
        self.config = config

    def call(
        self,
        hidden_states,
        attention_mask: tf.Tensor | None = None,
        encoder_hidden_states: tf.Tensor | None = None,
        encoder_attention_mask: tf.Tensor | None = None,
        layer_head_mask: tf.Tensor | None = None,
        cross_attn_layer_head_mask: tf.Tensor | None = None,
        past_key_value: Tuple[tf.Tensor] | None = None,
        training=False,
    ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
        """
        Args:
            hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`tf.Tensor`): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            encoder_hidden_states (`tf.Tensor`):
                cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
            encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
                `(decoder_attention_heads,)`
            cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module.
                `(decoder_attention_heads,)`
            past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states
        """
        residual = hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)

        # Self Attention
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
        # add present self-attn cache to positions 1,2 of present_key_value tuple
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            past_key_value=self_attn_past_key_value,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            training=training,
        )
        hidden_states = self.dropout(hidden_states, training=training)
        hidden_states = residual + hidden_states

        # Cross-Attention Block
        cross_attn_present_key_value = None
        cross_attn_weights = None
        if encoder_hidden_states is not None:
            residual = hidden_states
            hidden_states = self.encoder_attn_layer_norm(hidden_states)

            # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
            cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
            hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
                hidden_states=hidden_states,
                key_value_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
                layer_head_mask=cross_attn_layer_head_mask,
                past_key_value=cross_attn_past_key_value,
                training=training,
            )
            hidden_states = self.dropout(hidden_states, training=training)
            hidden_states = residual + hidden_states

            # add cross-attn to positions 3,4 of present_key_value tuple
            present_key_value = present_key_value + cross_attn_present_key_value

        # Fully Connected
        residual = hidden_states
        hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = self.activation_dropout(hidden_states, training=training)
        hidden_states = self.fc2(hidden_states)
        hidden_states = self.dropout(hidden_states, training=training)
        hidden_states = residual + hidden_states

        return (
            hidden_states,
            self_attn_weights,
            cross_attn_weights,
            present_key_value,
        )

    def build(self, input_shape=None):
        if self.built:
            return
        self.built = True
        if getattr(self, "self_attn", None) is not None:
            with tf.name_scope(self.self_attn.name):
                self.self_attn.build(None)
        if getattr(self, "self_attn_layer_norm", None) is not None:
            with tf.name_scope(self.self_attn_layer_norm.name):
                self.self_attn_layer_norm.build([None, None, self.embed_dim])
        if getattr(self, "encoder_attn", None) is not None:
            with tf.name_scope(self.encoder_attn.name):
                self.encoder_attn.build(None)
        if getattr(self, "encoder_attn_layer_norm", None) is not None:
            with tf.name_scope(self.encoder_attn_layer_norm.name):
                self.encoder_attn_layer_norm.build([None, None, self.embed_dim])
        if getattr(self, "fc1", None) is not None:
            with tf.name_scope(self.fc1.name):
                self.fc1.build([None, None, self.embed_dim])
        if getattr(self, "fc2", None) is not None:
            with tf.name_scope(self.fc2.name):
                self.fc2.build([None, None, self.config.decoder_ffn_dim])
        if getattr(self, "final_layer_norm", None) is not None:
            with tf.name_scope(self.final_layer_norm.name):
                self.final_layer_norm.build([None, None, self.embed_dim])


class TFWhisperPreTrainedModel(TFPreTrainedModel):
    config_class = WhisperConfig
    base_model_prefix = "model"
    main_input_name = "input_features"

    def _get_feat_extract_output_lengths(self, input_lengths: tf.Tensor) -> int:
        """
        Computes the output length of the convolutional layers
        """
        input_lengths = (input_lengths - 1) // 2 + 1

        return input_lengths

    @property
    def dummy_inputs(self) -> Dict[str, tf.Tensor]:
        """
        Dummy inputs to build the network.

        Returns:
            `Dict[str, tf.Tensor]`: The dummy inputs.
        """
        return {
            self.main_input_name: tf.random.uniform(
                [1, self.config.num_mel_bins, self.config.max_source_positions * 2 - 1], dtype=tf.float32
            ),
            "decoder_input_ids": tf.constant([[1, 3]], dtype=tf.int32),
        }

    @property
    def input_signature(self):
        return {
            "input_features": tf.TensorSpec((None, self.config.num_mel_bins, None), tf.float32, name="input_features"),
            "decoder_input_ids": tf.TensorSpec((None, None), tf.int32, name="decoder_input_ids"),
            "decoder_attention_mask": tf.TensorSpec((None, None), tf.int32, name="decoder_attention_mask"),
        }


WHISPER_START_DOCSTRING = r"""
    This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
    as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
    behavior.

    Parameters:
        config ([`WhisperConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""

WHISPER_INPUTS_DOCSTRING = r"""
    Args:
        input_features (`tf.Tensor` of shape `(batch_size, feature_size, sequence_length)`):
            Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be obtained
            by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.*
            via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
            [`AutoFeatureExtractor`] should be used for extracting the fbank features, padding and conversion into a
            tensor of type `tf.Tensor`. See [`~WhisperFeatureExtractor.__call__`]
        decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
            Indices of decoder input sequence tokens in the vocabulary.

            Indices can be obtained using [`SpeechToTextTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are decoder input IDs?](../glossary#decoder-input-ids)

            SpeechToText uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If
            `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).
        decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
            Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
            be used by default.

            If you want to change padding behavior, you should read
            [`modeling_whisper._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the
            paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
        head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        encoder_outputs (`tuple(tuple(tf.Tensor)`, *optional*):
            Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
            `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
            hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
        past_key_values (`tuple(tuple(tf.Tensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(tf.Tensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.

            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        decoder_inputs_embeds (`tf.Tensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
            representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
            input (see `past_key_values`). This is useful if you want more control over how to convert
            `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


@keras_serializable
class TFWhisperEncoder(keras.layers.Layer):
    config_class = WhisperConfig
    """
    Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
    [`TFWhisperEncoderLayer`].

    Args:
        config: WhisperConfig
        embed_tokens (TFWhisperEmbedding): output embedding
    """

    def __init__(self, config: WhisperConfig, **kwargs):
        super().__init__(**kwargs)
        self.config = config
        self.layerdrop = config.encoder_layerdrop

        self.embed_dim = config.d_model
        self.num_mel_bins = config.num_mel_bins
        self.padding_idx = config.pad_token_id
        self.max_source_positions = config.max_source_positions
        self.embed_scale = math.sqrt(self.embed_dim) if config.scale_embedding else 1.0

        # Padding is added in call() to match the PyTorch implementation
        self.conv1 = keras.layers.Conv1D(self.embed_dim, kernel_size=3, strides=1, padding="valid", name="conv1")
        self.conv2 = keras.layers.Conv1D(self.embed_dim, kernel_size=3, strides=2, padding="valid", name="conv2")

        self.embed_positions = TFWhisperPositionalEmbedding(
            num_positions=self.max_source_positions,
            embedding_dim=self.embed_dim,
            embedding_initializer=sinusoidal_embedding_init,
            name="embed_positions",
        )
        self.embed_positions.trainable = False

        self.encoder_layers = [TFWhisperEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)]
        self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")

        self.dropout = keras.layers.Dropout(config.dropout)

    @unpack_inputs
    def call(
        self,
        input_features=None,
        head_mask=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        training=False,
    ):
        r"""
        Args:
            input_features (`tf.Tensor` of shape `(batch_size, feature_size, sequence_length)`):
                Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be
                obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a
                `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
                `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the fbank features,
                padding and conversion into a tensor of type `tf.Tensor`. See [`~WhisperFeatureExtractor.__call__`]
            head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.

            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # TF 2.0 layers can't use channels first format when running on CPU.
        input_features = tf.transpose(input_features, perm=(0, 2, 1))
        input_features = tf.pad(input_features, [[0, 0], [1, 1], [0, 0]])
        inputs_embeds = keras.activations.gelu(self.conv1(input_features))
        inputs_embeds = tf.pad(inputs_embeds, [[0, 0], [1, 1], [0, 0]])
        inputs_embeds = keras.activations.gelu(self.conv2(inputs_embeds))
        inputs_embeds = tf.transpose(inputs_embeds, perm=(0, 1, 2))

        embed_pos = self.embed_positions(input_ids=tf.zeros((1, self.max_source_positions), dtype=tf.int32))

        hidden_states = inputs_embeds + embed_pos
        hidden_states = self.dropout(hidden_states, training=training)

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        # check if head_mask has a correct number of layers specified if desired
        if head_mask is not None:
            tf.debugging.assert_equal(
                shape_list(head_mask)[0],
                len(self.encoder_layers),
                message=(
                    f"The head_mask should be specified for {len(self.encoder_layers)} layers, but it is for"
                    f" {shape_list(head_mask)[0]}."
                ),
            )

        for idx, encoder_layer in enumerate(self.encoder_layers):
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            dropout_probability = random.uniform(0, 1)
            if training and (dropout_probability < self.layerdrop):  # skip the layer
                continue

            hidden_states, attn = encoder_layer(
                hidden_states,
                None,
                layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                training=training,
            )

            if output_attentions:
                all_attentions += (attn,)

        hidden_states = self.layer_norm(hidden_states)
        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
        return TFBaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
        )

    def build(self, input_shape=None):
        if self.built:
            return
        self.built = True
        if getattr(self, "conv1", None) is not None:
            with tf.name_scope(self.conv1.name):
                self.conv1.build([None, None, self.num_mel_bins])
        if getattr(self, "conv2", None) is not None:
            with tf.name_scope(self.conv2.name):
                self.conv2.build([None, None, self.embed_dim])
        if getattr(self, "embed_positions", None) is not None:
            with tf.name_scope(self.embed_positions.name):
                self.embed_positions.build(None)
        if getattr(self, "layer_norm", None) is not None:
            with tf.name_scope(self.layer_norm.name):
                self.layer_norm.build([None, None, self.config.d_model])
        if getattr(self, "encoder_layers", None) is not None:
            for layer in self.encoder_layers:
                with tf.name_scope(layer.name):
                    layer.build(None)


@keras_serializable
class TFWhisperDecoder(keras.layers.Layer):
    config_class = WhisperConfig
    """
    Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFWhisperDecoderLayer`]

    Args:
        config: WhisperConfig
    """

    def __init__(self, config: WhisperConfig, **kwargs):
        super().__init__(**kwargs)
        self.config = config
        self.dropout = keras.layers.Dropout(config.dropout)
        self.layerdrop = config.decoder_layerdrop
        self.padding_idx = config.pad_token_id
        self.max_target_positions = config.max_target_positions
        self.max_source_positions = config.max_source_positions
        self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0

        self.embed_tokens = keras.layers.Embedding(
            input_dim=config.vocab_size,
            output_dim=config.d_model,
            embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std),
            name="embed_tokens",
        )
        self.embed_positions = TFWhisperPositionalEmbedding(
            self.max_target_positions, config.d_model, name="embed_positions"
        )

        self.decoder_layers = [TFWhisperDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)]

        self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    def _prepare_decoder_attention_mask(self, attention_mask, input_shape, past_key_values_length):
        # create causal mask
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        batch_size, seq_len = input_shape[0], input_shape[1]

        combined_attention_mask = tf.cond(
            tf.math.greater(seq_len, 1),
            lambda: _make_causal_mask(input_shape, past_key_values_length=past_key_values_length),
            lambda: _expand_mask(tf.ones((batch_size, seq_len + past_key_values_length)), tgt_len=seq_len),
        )

        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            expanded_attn_mask = _expand_mask(attention_mask, tgt_len=input_shape[-1])
            combined_attention_mask = (
                expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
            )
        return combined_attention_mask

    @unpack_inputs
    def call(
        self,
        input_ids=None,
        attention_mask=None,
        position_ids=None,
        encoder_hidden_states=None,
        head_mask=None,
        cross_attn_head_mask=None,
        past_key_values=None,
        inputs_embeds=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        training=False,
    ):
        r"""
        Args:
            input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
                provide it.

                Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and
                [`PreTrainedTokenizer.__call__`] for details.

                [What are input IDs?](../glossary#input-ids)
            attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
                range `[0, config.max_position_embeddings - 1]`.
            encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
                Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
                of the decoder.
            head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.

            cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention
                on hidden heads. Mask values selected in `[0, 1]`:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.

            past_key_values (`tuple(tuple(tf.Tensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
                Tuple of `tuple(tf.Tensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
                `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
                `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.

                Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
                cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
                that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
                all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
            inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
                This is useful if you want more control over how to convert `input_ids` indices into associated vectors
                than the model's internal embedding lookup matrix.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = tf.shape(input_ids)
            input_ids = tf.reshape(input_ids, (-1, input_shape[-1]))
        elif inputs_embeds is not None:
            input_shape = tf.shape(inputs_embeds)[:-1]
        else:
            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")

        # past_key_values_length
        past_key_values_length = tf.shape(past_key_values[0][0])[2] if past_key_values is not None else 0

        if inputs_embeds is None:
            check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
            inputs_embeds = self.embed_tokens(input_ids)

        attention_mask = self._prepare_decoder_attention_mask(attention_mask, input_shape, past_key_values_length)

        # embed positions
        filled_past_positions = past_key_values_length if position_ids is None else position_ids[0, -1]
        positions = self.embed_positions(input_ids, past_key_values_length=filled_past_positions)

        hidden_states = inputs_embeds + positions
        hidden_states = self.dropout(hidden_states, training=training)

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
        next_decoder_cache = () if use_cache else None

        # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
        for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
            if attn_mask is not None:
                tf.debugging.assert_equal(
                    shape_list(attn_mask)[0],
                    len(self.decoder_layers),
                    message=(
                        f"The {attn_mask_name} should be specified for {len(self.decoder_layers)} layers, but it is"
                        f" for {shape_list(attn_mask)[0]}."
                    ),
                )

        for idx, decoder_layer in enumerate(self.decoder_layers):
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            if output_hidden_states:
                all_hidden_states += (hidden_states,)
            dropout_probability = random.uniform(0, 1)
            if training and (dropout_probability < self.layerdrop):
                continue

            past_key_value = past_key_values[idx] if past_key_values is not None else None

            layer_outputs = decoder_layer(
                hidden_states,
                attention_mask=attention_mask,
                encoder_hidden_states=encoder_hidden_states,
                layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                cross_attn_layer_head_mask=(cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None),
                past_key_value=past_key_value,
                training=training,
            )
            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache += (layer_outputs[3],)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

                if encoder_hidden_states is not None:
                    all_cross_attentions += (layer_outputs[2],)

        hidden_states = self.layer_norm(hidden_states)
        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
                if v is not None
            )
        return TFBaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            cross_attentions=all_cross_attentions,
        )

    def build(self, input_shape=None):
        if self.built:
            return
        self.built = True
        if getattr(self, "embed_tokens", None) is not None:
            with tf.name_scope(self.embed_tokens.name):
                self.embed_tokens.build(None)
        if getattr(self, "embed_positions", None) is not None:
            with tf.name_scope(self.embed_positions.name):
                self.embed_positions.build(None)
        if getattr(self, "layer_norm", None) is not None:
            with tf.name_scope(self.layer_norm.name):
                self.layer_norm.build([None, None, self.config.d_model])
        if getattr(self, "decoder_layers", None) is not None:
            for layer in self.decoder_layers:
                with tf.name_scope(layer.name):
                    layer.build(None)


@add_start_docstrings(
    "The bare Whisper Model outputting raw hidden-states without any specific head on top.",
    WHISPER_START_DOCSTRING,
)
@keras_serializable
class TFWhisperMainLayer(keras.layers.Layer):
    config_class = WhisperConfig

    def __init__(self, config: WhisperConfig, **kwargs):
        super().__init__(**kwargs)
        self.config = config
        self.encoder = TFWhisperEncoder(config, name="encoder")
        self.decoder = TFWhisperDecoder(config, name="decoder")

    def get_input_embeddings(self):
        return self.decoder.embed_tokens

    def set_input_embeddings(self, value):
        self.decoder.embed_tokens = value

    def get_encoder(self):
        return self.encoder

    def get_decoder(self):
        return self.decoder

    @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
    @unpack_inputs
    def call(
        self,
        input_features=None,
        decoder_input_ids=None,
        decoder_attention_mask=None,
        decoder_position_ids=None,
        head_mask=None,
        decoder_head_mask=None,
        cross_attn_head_mask=None,
        encoder_outputs=None,
        past_key_values=None,
        decoder_inputs_embeds=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        training=False,
    ):
        r"""
        Returns:

        Example:

         ```python
         >>> import tensorflow as tf
         >>> from transformers import TFWhisperModel, AutoFeatureExtractor
         >>> from datasets import load_dataset

         >>> model = TFWhisperModel.from_pretrained("openai/whisper-base")
         >>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base")
         >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
         >>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="tf")
         >>> input_features = inputs.input_features
         >>> decoder_input_ids = tf.convert_to_tensor([[1, 1]]) * model.config.decoder_start_token_id
         >>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
         >>> list(last_hidden_state.shape)
         [1, 2, 512]
         ```"""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_features,
                head_mask=head_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
                training=training,
            )
        # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True
        elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput):
            encoder_outputs = TFBaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
            )

        # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            position_ids=decoder_position_ids,
            encoder_hidden_states=encoder_outputs[0],
            head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            past_key_values=past_key_values,
            inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )

        if not return_dict:
            return decoder_outputs + encoder_outputs

        return TFSeq2SeqModelOutput(
            last_hidden_state=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )

    def build(self, input_shape=None):
        if self.built:
            return
        self.built = True
        if getattr(self, "encoder", None) is not None:
            with tf.name_scope(self.encoder.name):
                self.encoder.build(None)
        if getattr(self, "decoder", None) is not None:
            with tf.name_scope(self.decoder.name):
                self.decoder.build(None)


@add_start_docstrings(
    "The bare Whisper Model outputting raw hidden-states without any specific head on top.",
    WHISPER_START_DOCSTRING,
)
class TFWhisperModel(TFWhisperPreTrainedModel):
    def __init__(self, config: WhisperConfig, **kwargs):
        super().__init__(config, **kwargs)

        self.model = TFWhisperMainLayer(config, name="model")

    def get_input_embeddings(self):
        return self.model.decoder.embed_tokens

    def set_input_embeddings(self, value):
        self.model.decoder.embed_tokens = value

    def get_encoder(self):
        return self.model.encoder

    def get_decoder(self):
        return self.model.decoder

    def decoder(self):
        return self.model.decoder

    def encoder(self):
        return self.model.encoder

    @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=TFSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
    @unpack_inputs
    def call(
        self,
        input_features: TFModelInputType | None = None,
        decoder_input_ids: np.ndarray | tf.Tensor | None = None,
        decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
        decoder_position_ids: np.ndarray | tf.Tensor | None = None,
        head_mask: np.ndarray | tf.Tensor | None = None,
        decoder_head_mask: np.ndarray | tf.Tensor | None = None,
        cross_attn_head_mask: np.ndarray | tf.Tensor | None = None,
        encoder_outputs: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
        past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
        decoder_inputs_embeds: Optional[Tuple[Union[np.ndarray, tf.Tensor]]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: bool = False,
    ) -> Union[Tuple[tf.Tensor], TFSeq2SeqModelOutput]:
        r"""
        Returns:

        Example:

         ```python
         >>> import tensorflow as tf
         >>> from transformers import TFWhisperModel, AutoFeatureExtractor
         >>> from datasets import load_dataset

         >>> model = TFWhisperModel.from_pretrained("openai/whisper-base")
         >>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base")
         >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
         >>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="tf")
         >>> input_features = inputs.input_features
         >>> decoder_input_ids = tf.convert_to_tensor([[1, 1]]) * model.config.decoder_start_token_id
         >>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
         >>> list(last_hidden_state.shape)
         [1, 2, 512]
         ```"""
        outputs = self.model(
            input_features=input_features,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            decoder_position_ids=decoder_position_ids,
            head_mask=head_mask,
            decoder_head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            encoder_outputs=encoder_outputs,
            past_key_values=past_key_values,
            decoder_inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )
        return outputs

    def serving_output(self, output):
        pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
        dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
        dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
        cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
        enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
        enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None

        return TFSeq2SeqModelOutput(
            last_hidden_state=output.last_hidden_state,
            past_key_values=pkv,
            decoder_hidden_states=dec_hs,
            decoder_attentions=dec_attns,
            cross_attentions=cross_attns,
            encoder_last_hidden_state=output.encoder_last_hidden_state,
            encoder_hidden_states=enc_hs,
            encoder_attentions=enc_attns,
        )

    def build(self, input_shape=None):
        if self.built:
            return
        self.built = True
        if getattr(self, "model", None) is not None:
            with tf.name_scope(self.model.name):
                self.model.build(None)


@add_start_docstrings(
    "The Whisper Model with a language modeling head. Can be used for automatic speech recognition.",
    WHISPER_START_DOCSTRING,
)
class TFWhisperForConditionalGeneration(TFWhisperPreTrainedModel, TFCausalLanguageModelingLoss):
    base_model_prefix = "model"
    _keys_to_ignore_on_load_missing = [
        r"encoder.version",
        r"decoder.version",
        r"proj_out.weight",
    ]
    _keys_to_ignore_on_save = [
        r"proj_out.weight",
    ]

    def __init__(self, config: WhisperConfig, **kwargs):
        super().__init__(config, **kwargs)
        self.model = TFWhisperMainLayer(config, name="model")

    def get_encoder(self):
        return self.model.get_encoder()

    def get_decoder(self):
        return self.model.get_decoder()

    def get_output_embeddings(self):
        return self.get_input_embeddings()

    def set_output_embeddings(self, value):
        self.set_input_embeddings(value)

    def resize_token_embeddings(self, new_num_tokens: int) -> keras.layers.Embedding:
        new_embeddings = super().resize_token_embeddings(new_num_tokens)
        return new_embeddings

    @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
    @unpack_inputs
    def call(
        self,
        input_features: TFModelInputType | None = None,
        decoder_input_ids: np.ndarray | tf.Tensor | None = None,
        decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
        decoder_position_ids: np.ndarray | tf.Tensor | None = None,
        head_mask: np.ndarray | tf.Tensor | None = None,
        decoder_head_mask: np.ndarray | tf.Tensor | None = None,
        cross_attn_head_mask: np.ndarray | tf.Tensor | None = None,
        encoder_outputs: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
        past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
        decoder_inputs_embeds: Optional[Tuple[Union[np.ndarray, tf.Tensor]]] = None,
        labels: np.ndarray | tf.Tensor | None = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: bool = False,
    ) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]:
        r"""
        labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]`
            or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is
            only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:

        Example:

        ```python
        >>> import tensorflow as tf
        >>> from transformers import AutoProcessor, TFWhisperForConditionalGeneration
        >>> from datasets import load_dataset

        >>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
        >>> model = TFWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")

        >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")

        >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="tf")
        >>> input_features = inputs.input_features

        >>> generated_ids = model.generate(input_features=input_features)

        >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
        >>> transcription
        ' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.'
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if labels is not None:
            if decoder_input_ids is None and decoder_inputs_embeds is None:
                decoder_input_ids = shift_tokens_right(
                    labels, self.config.pad_token_id, self.config.decoder_start_token_id
                )

        outputs = self.model(
            input_features,
            decoder_input_ids=decoder_input_ids,
            encoder_outputs=encoder_outputs,
            decoder_attention_mask=decoder_attention_mask,
            decoder_position_ids=decoder_position_ids,
            head_mask=head_mask,
            decoder_head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            past_key_values=past_key_values,
            decoder_inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )
        decoder_last_hidden_state = outputs[0]
        # Decoder and encoder embeddings are tied
        lm_logits = tf.matmul(decoder_last_hidden_state, self.get_output_embeddings().weights, transpose_b=True)

        loss = None if labels is None else self.hf_compute_loss(labels, lm_logits)

        if not return_dict:
            output = (lm_logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return TFSeq2SeqLMOutput(
            loss=loss,
            logits=lm_logits,
            past_key_values=outputs.past_key_values,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            cross_attentions=outputs.cross_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
        )

    def generate(
        self,
        inputs: Optional[tf.Tensor] = None,
        generation_config: Optional[GenerationConfig] = None,
        logits_processor: Optional[TFLogitsProcessorList] = None,
        seed: Optional[List[int]] = None,
        return_timestamps: Optional[bool] = None,
        task: Optional[str] = None,
        language: Optional[str] = None,
        is_multilingual: Optional[bool] = None,
        prompt_ids: Optional[tf.Tensor] = None,
        return_token_timestamps=None,
        **kwargs,
    ):
        r"""
        Generates sequences of token ids for models with a language modeling head.

        <Tip warning={true}>

        Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
        model's default generation configuration. You can override any `generation_config` by passing the corresponding
        parameters to generate, e.g. `.generate(inputs, num_beams=4, do_sample=True)`.

        For an overview of generation strategies and code examples, check out the [following
        guide](../generation_strategies).

        </Tip>

        Parameters:
            inputs (`tf.Tensor` of varying shape depending on the modality, *optional*):
                The sequence used as a prompt for the generation or as model inputs to the encoder. If unset the method
                initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` should of in
                the format of `input_ids`. For encoder-decoder models *inputs* can represent any of `input_ids`,
                `input_values`, `input_features`, or `pixel_values`.
            generation_config (`~generation.GenerationConfig`, *optional*):
                The generation configuration to be used as base parametrization for the generation call. `**kwargs`
                passed to generate matching the attributes of `generation_config` will override them. If
                `generation_config` is not provided, the default will be used, which had the following loading
                priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
                configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
                default values, whose documentation should be checked to parameterize generation.
            logits_processor (`LogitsProcessorList`, *optional*):
                Custom logits processors that complement the default logits processors built from arguments and
                generation config. If a logit processor is passed that is already created with the arguments or a
                generation config an error is thrown. This feature is intended for advanced users.
            seed (`List[int]`, *optional*):
                Random seed to control sampling, containing two integers, used when `do_sample` is `True`. See the
                `seed` argument from stateless functions in `tf.random`.
            return_timestamps (`bool`, *optional*):
                Whether to return the timestamps with the text. This enables the `TFWhisperTimestampsLogitsProcessor`.
            task (`str`, *optional*):
                Task to use for generation, either "translate" or "transcribe". The `model.config.forced_decoder_ids`
                will be updated accordingly.
            language (`str`, *optional*):
                Language token to use for generation, can be either in the form of `<|en|>`, `en` or `english`. You can
                find all the possible language tokens in the `model.generation_config.lang_to_id` dictionary.
            is_multilingual (`bool`, *optional*):
                Whether or not the model is multilingual.
            prompt_ids (`tf.Tensor`, *optional*):
                Rank-1 tensor of token IDs created by passing text to [`~WhisperProcessor.get_prompt_ids`] that is
                provided as a prompt to each chunk. This can be used to provide or "prompt-engineer" a context for
                transcription, e.g. custom vocabularies or proper nouns to make it more likely to predict those words
                correctly. It cannot be used in conjunction with `decoder_start_token_id` as it overwrites this value.
            return_token_timestamps (`bool`, *optional*):
                Whether to return token-level timestamps with the text. This can be used with or without the
                `return_timestamps` option. To get word-level timestamps, use the tokenizer to group the tokens into
                words.
            kwargs (`Dict[str, Any]`, *optional*):
                Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
                forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
                specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.

        Return:
            [`~utils.ModelOutput`] or `tf.Tensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when
            `config.return_dict_in_generate=True`) or a `tf.Tensor`.

                If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
                [`~utils.ModelOutput`] types are:

                    - [`~generation.TFGreedySearchDecoderOnlyOutput`],
                    - [`~generation.TFSampleDecoderOnlyOutput`],
                    - [`~generation.TFBeamSearchDecoderOnlyOutput`],
                    - [`~generation.TFBeamSampleDecoderOnlyOutput`]

                If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
                [`~utils.ModelOutput`] types are:

                    - [`~generation.TFGreedySearchEncoderDecoderOutput`],
                    - [`~generation.TFSampleEncoderDecoderOutput`],
                    - [`~generation.TFBeamSearchEncoderDecoderOutput`],
                    - [`~generation.TFBeamSampleEncoderDecoderOutput`]

        """
        if generation_config is None:
            generation_config = self.generation_config

        if return_timestamps is not None:
            if not hasattr(generation_config, "no_timestamps_token_id"):
                raise ValueError(
                    "You are trying to return timestamps, but the generation config is not properly set. "
                    "Make sure to initialize the generation config with the correct attributes that are needed such as `no_timestamps_token_id`. "
                    "For more details on how to generate the approtiate config, refer to https://github.com/huggingface/transformers/issues/21878#issuecomment-1451902363"
                )

            generation_config.return_timestamps = return_timestamps
        else:
            generation_config.return_timestamps = False

        if language is not None:
            language = language.lower()
            generation_config.language = language
        if task is not None:
            generation_config.task = task

        forced_decoder_ids = None

        # Legacy code for backward compatibility
        if hasattr(self.config, "forced_decoder_ids") and self.config.forced_decoder_ids is not None:
            forced_decoder_ids = self.config.forced_decoder_ids
        elif (
            hasattr(self.generation_config, "forced_decoder_ids")
            and self.generation_config.forced_decoder_ids is not None
        ):
            forced_decoder_ids = self.generation_config.forced_decoder_ids
        else:
            forced_decoder_ids = kwargs.get("forced_decoder_ids", None)

        if task is not None or language is not None or (forced_decoder_ids is None and prompt_ids is not None):
            forced_decoder_ids = []
            if hasattr(generation_config, "language"):
                if generation_config.language in generation_config.lang_to_id.keys():
                    language_token = generation_config.language
                elif generation_config.language in TO_LANGUAGE_CODE.keys():
                    language_token = f"<|{TO_LANGUAGE_CODE[generation_config.language]}|>"
                elif generation_config.language in TO_LANGUAGE_CODE.values():
                    language_token = f"<|{generation_config.language}|>"
                else:
                    is_language_code = len(generation_config.language) == 2
                    raise ValueError(
                        f"Unsupported language: {generation_config.language}. Language should be one of:"
                        f" {list(TO_LANGUAGE_CODE.values()) if is_language_code else list(TO_LANGUAGE_CODE.keys())}."
                    )
                if language_token not in generation_config.lang_to_id:
                    raise ValueError(
                        f"{language_token} is not supported by this specific model as it is not in the `generation_config.lang_to_id`."
                        "(You should just add it to the generation config)"
                    )
                forced_decoder_ids.append((1, generation_config.lang_to_id[language_token]))
            else:
                forced_decoder_ids.append((1, None))  # automatically detect the language

            if hasattr(generation_config, "task"):
                if generation_config.task in TASK_IDS:
                    forced_decoder_ids.append((2, generation_config.task_to_id[generation_config.task]))
                else:
                    raise ValueError(
                        f"The `{generation_config.task}`task is not supported. The task should be one of `{TASK_IDS}`"
                    )
            elif hasattr(generation_config, "task_to_id"):
                forced_decoder_ids.append((2, generation_config.task_to_id["transcribe"]))  # defaults to transcribe
            if hasattr(generation_config, "no_timestamps_token_id") and not generation_config.return_timestamps:
                idx = forced_decoder_ids[-1][0] + 1 if forced_decoder_ids else 1
                forced_decoder_ids.append((idx, generation_config.no_timestamps_token_id))

        if forced_decoder_ids is not None:
            generation_config.forced_decoder_ids = forced_decoder_ids

        if prompt_ids is not None:
            if kwargs.get("decoder_start_token_id") is not None:
                raise ValueError(
                    "When specifying `prompt_ids`, you cannot also specify `decoder_start_token_id` as it gets overwritten."
                )
            prompt_ids = prompt_ids.tolist()
            decoder_start_token_id, *text_prompt_ids = prompt_ids
            # Slicing the text prompt ids in a manner consistent with the OpenAI implementation
            # to accommodate context space for the prefix (see https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/decoding.py#L599)
            text_prompt_ids = text_prompt_ids[-self.config.max_length // 2 - 1 :]
            # Set the decoder_start_token_id to <|startofprev|>
            kwargs.update({"decoder_start_token_id": decoder_start_token_id})

            # Update the max generation length to include the prompt
            specified_max_length = kwargs.pop("max_new_tokens", None) or kwargs.pop("max_length", None)
            default_max_length = generation_config.max_new_tokens or generation_config.max_length
            non_prompt_max_length = specified_max_length or default_max_length
            kwargs["max_new_tokens"] = non_prompt_max_length + len(text_prompt_ids)

            # Reformat the forced_decoder_ids to incorporate the prompt
            non_prompt_forced_decoder_ids = (
                kwargs.pop("forced_decoder_ids", None) or generation_config.forced_decoder_ids
            )
            forced_decoder_ids = [
                *text_prompt_ids,
                generation_config.decoder_start_token_id,
                *[token for _rank, token in non_prompt_forced_decoder_ids],
            ]
            forced_decoder_ids = [(rank + 1, token) for rank, token in enumerate(forced_decoder_ids)]
            generation_config.forced_decoder_ids = forced_decoder_ids

        # TODO: Implement `WhisperTimeStampLogitsProcessor`.
        if generation_config.return_timestamps:
            # logits_processor = [TFWhisperTimeStampLogitsProcessor(generation_config)]
            raise ValueError("`TFWhisperForConditionalGeneration` doesn't support returning the timestamps yet.")

        if return_token_timestamps:
            kwargs["output_attentions"] = True
            kwargs["return_dict_in_generate"] = True

            if getattr(generation_config, "task", None) == "translate":
                logger.warning("Token-level timestamps may not be reliable for task 'translate'.")
            if not hasattr(generation_config, "alignment_heads"):
                raise ValueError(
                    "Model generation config has no `alignment_heads`, token-level timestamps not available. "
                    "See https://gist.github.com/hollance/42e32852f24243b748ae6bc1f985b13a on how to add this property to the generation config."
                )

        outputs = super().generate(
            inputs,
            generation_config,
            logits_processor,
            **kwargs,
        )

        if return_token_timestamps and hasattr(generation_config, "alignment_heads"):
            outputs["token_timestamps"] = self._extract_token_timestamps(outputs, generation_config.alignment_heads)

        return outputs

    def serving_output(self, output):
        pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
        dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
        dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
        cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
        enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
        enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None

        return TFSeq2SeqLMOutput(
            logits=output.logits,
            past_key_values=pkv,
            decoder_hidden_states=dec_hs,
            decoder_attentions=dec_attns,
            cross_attentions=cross_attns,
            encoder_last_hidden_state=output.encoder_last_hidden_state,
            encoder_hidden_states=enc_hs,
            encoder_attentions=enc_attns,
        )

    def prepare_inputs_for_generation(
        self,
        decoder_input_ids,
        past_key_values=None,
        use_cache=None,
        encoder_outputs=None,
        attention_mask=None,
        decoder_attention_mask=None,
        **kwargs,
    ):
        # cut decoder_input_ids if past is used
        if past_key_values is not None:
            decoder_input_ids = decoder_input_ids[:, -1:]

        if decoder_attention_mask is not None:  # xla
            decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:]
        elif past_key_values is not None:  # no xla + past
            decoder_position_ids = past_key_values[0][0].shape[2]
        else:  # no xla + no past
            decoder_position_ids = tf.range(decoder_input_ids.shape[1])
        decoder_position_ids = tf.broadcast_to(decoder_position_ids, decoder_input_ids.shape)

        return {
            "input_features": None,  # Needs to be passed to make Keras.layer.__call__ happy
            "encoder_outputs": encoder_outputs,
            "past_key_values": past_key_values,
            "decoder_input_ids": decoder_input_ids,
            "use_cache": use_cache,
            "decoder_attention_mask": decoder_attention_mask,
            "decoder_position_ids": decoder_position_ids,
        }

    def build(self, input_shape=None):
        if self.built:
            return
        self.built = True
        if getattr(self, "model", None) is not None:
            with tf.name_scope(self.model.name):
                self.model.build(None)