|
import math |
|
from dataclasses import dataclass |
|
from typing import Tuple, Optional, Literal |
|
|
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
import torch.distributed as dist |
|
|
|
from kernel import act_quant, weight_dequant, fp8_gemm |
|
|
|
|
|
world_size = 1 |
|
rank = 0 |
|
block_size = 128 |
|
gemm_impl: Literal["bf16", "fp8"] = "bf16" |
|
attn_impl: Literal["naive", "absorb"] = "absorb" |
|
|
|
@dataclass |
|
class ModelArgs: |
|
""" |
|
Data class for defining model arguments and hyperparameters. |
|
|
|
Attributes: |
|
max_batch_size (int): Maximum batch size. |
|
max_seq_len (int): Maximum sequence length. |
|
dtype (Literal["bf16", "fp8"]): Data type for computations. |
|
vocab_size (int): Vocabulary size. |
|
dim (int): Model dimension. |
|
inter_dim (int): Intermediate dimension for MLP layers. |
|
moe_inter_dim (int): Intermediate dimension for MoE layers. |
|
n_layers (int): Number of transformer layers. |
|
n_dense_layers (int): Number of dense layers in the model. |
|
n_heads (int): Number of attention heads. |
|
n_routed_experts (int): Number of routed experts for MoE layers. |
|
n_shared_experts (int): Number of shared experts for MoE layers. |
|
n_activated_experts (int): Number of activated experts in MoE layers. |
|
n_expert_groups (int): Number of expert groups. |
|
n_limited_groups (int): Number of limited groups for MoE routing. |
|
score_func (Literal["softmax", "sigmoid"]): Scoring function for MoE routing. |
|
route_scale (float): Scaling factor for routing scores. |
|
q_lora_rank (int): LoRA rank for query projections. |
|
kv_lora_rank (int): LoRA rank for key-value projections. |
|
qk_nope_head_dim (int): Dimension for query-key projections without positional embeddings. |
|
qk_rope_head_dim (int): Dimension for query-key projections with rotary embeddings. |
|
v_head_dim (int): Dimension for value projections. |
|
original_seq_len (int): Original sequence length. |
|
rope_theta (float): Base for rotary positional encoding. |
|
rope_factor (float): Scaling factor for extended sequence lengths. |
|
beta_fast (int): Fast beta correction factor. |
|
beta_slow (int): Slow beta correction factor. |
|
mscale (float): Scaling factor for extended attention. |
|
""" |
|
max_batch_size: int = 8 |
|
max_seq_len: int = 4096 * 4 |
|
dtype: Literal["bf16", "fp8"] = "bf16" |
|
vocab_size: int = 102400 |
|
dim: int = 2048 |
|
inter_dim: int = 10944 |
|
moe_inter_dim: int = 1408 |
|
n_layers: int = 27 |
|
n_dense_layers: int = 1 |
|
n_heads: int = 16 |
|
|
|
n_routed_experts: int = 64 |
|
n_shared_experts: int = 2 |
|
n_activated_experts: int = 6 |
|
n_expert_groups: int = 1 |
|
n_limited_groups: int = 1 |
|
score_func: Literal["softmax", "sigmoid"] = "softmax" |
|
route_scale: float = 1. |
|
|
|
q_lora_rank: int = 0 |
|
kv_lora_rank: int = 512 |
|
qk_nope_head_dim: int = 128 |
|
qk_rope_head_dim: int = 64 |
|
v_head_dim: int = 128 |
|
|
|
original_seq_len: int = 4096 |
|
rope_theta: float = 10000.0 |
|
rope_factor: float = 40 |
|
beta_fast: int = 32 |
|
beta_slow: int = 1 |
|
mscale: float = 1. |
|
|
|
|
|
class ParallelEmbedding(nn.Module): |
|
""" |
|
Embedding layer with parallelism support across distributed processes. |
|
|
|
Args: |
|
vocab_size (int): Vocabulary size. |
|
dim (int): Embedding dimension. |
|
""" |
|
def __init__(self, vocab_size: int, dim: int): |
|
super().__init__() |
|
self.vocab_size = vocab_size |
|
self.dim = dim |
|
assert vocab_size % world_size == 0 |
|
self.part_vocab_size = (vocab_size // world_size) |
|
self.vocab_start_idx = rank * self.part_vocab_size |
|
self.vocab_end_idx = self.vocab_start_idx + self.part_vocab_size |
|
self.weight = nn.Parameter(torch.empty(self.part_vocab_size, self.dim)) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Forward pass for parallel embedding layer. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor containing token indices. |
|
|
|
Returns: |
|
torch.Tensor: Embedded representations. |
|
|
|
Raises: |
|
ValueError: If `world_size` is not defined. |
|
""" |
|
if world_size > 1: |
|
mask = (x < self.vocab_start_idx) | (x >= self.vocab_end_idx) |
|
x = x - self.vocab_start_idx |
|
x[mask] = 0 |
|
y = F.embedding(x, self.weight) |
|
if world_size > 1: |
|
y[mask] = 0 |
|
dist.all_reduce(y) |
|
return y |
|
|
|
|
|
def linear(x: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None) -> torch.Tensor: |
|
""" |
|
Applies a linear transformation to the incoming data: y = xA^T + b. |
|
This function supports specialized implementations based on quantization |
|
and tensor formats. |
|
|
|
Args: |
|
x (torch.Tensor): The input tensor. |
|
weight (torch.Tensor): The weight tensor. It may be quantized and |
|
requires dequantization for certain cases. |
|
bias (Optional[torch.Tensor]): The bias tensor to be added. Default is None. |
|
|
|
Returns: |
|
torch.Tensor: The result of the linear transformation, which may involve |
|
quantization-aware computations depending on the input parameters. |
|
|
|
Notes: |
|
- If `weight` is quantized (e.g., `element_size() > 1`), a dequantized version |
|
is used for computation. |
|
- If `gemm_impl == "bf16"`, dequantization and a `bf16` GEMM operation are applied. |
|
- For other cases, the function applies quantization to `x` and uses `fp8_gemm` for computation. |
|
""" |
|
if weight.element_size() > 1: |
|
return F.linear(x, weight, bias) |
|
elif gemm_impl == "bf16": |
|
weight = weight_dequant(weight, weight.scale) |
|
return F.linear(x, weight, bias) |
|
else: |
|
x, scale = act_quant(x, block_size) |
|
y = fp8_gemm(x, scale, weight, weight.scale) |
|
if bias is not None: |
|
y += bias |
|
return y |
|
|
|
|
|
class Linear(nn.Module): |
|
""" |
|
Custom linear layer with support for quantized weights and optional bias. |
|
|
|
Args: |
|
in_features (int): Number of input features. |
|
out_features (int): Number of output features. |
|
bias (bool): Whether to include a bias term. Defaults to False. |
|
dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`. |
|
""" |
|
dtype = torch.bfloat16 |
|
|
|
def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None): |
|
super().__init__() |
|
self.in_features = in_features |
|
self.out_features = out_features |
|
self.weight = nn.Parameter(torch.empty(out_features, in_features, dtype=dtype or Linear.dtype)) |
|
if self.weight.element_size() == 1: |
|
scale_out_features = (out_features + block_size - 1) // block_size |
|
scale_in_features = (in_features + block_size - 1) // block_size |
|
self.weight.scale = self.scale = nn.Parameter(torch.empty(scale_out_features, scale_in_features, dtype=torch.float32)) |
|
else: |
|
self.register_parameter("scale", None) |
|
if bias: |
|
self.bias = nn.Parameter(torch.empty(self.part_out_features)) |
|
else: |
|
self.register_parameter("bias", None) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Forward pass for the custom linear layer. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor. |
|
|
|
Returns: |
|
torch.Tensor: Transformed tensor after linear computation. |
|
""" |
|
return linear(x, self.weight, self.bias) |
|
|
|
|
|
class ColumnParallelLinear(Linear): |
|
""" |
|
Linear layer with column parallelism, splitting output features across distributed processes. |
|
|
|
Args: |
|
in_features (int): Number of input features. |
|
out_features (int): Total number of output features. |
|
bias (bool): Whether to include a bias term. Defaults to False. |
|
dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`. |
|
""" |
|
def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None): |
|
assert out_features % world_size == 0 |
|
self.part_out_features = out_features // world_size |
|
super().__init__(in_features, self.part_out_features, bias, dtype) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Forward pass for column parallel linear layer. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor. |
|
|
|
Returns: |
|
torch.Tensor: Transformed tensor with column-parallel computation. |
|
""" |
|
y = linear(x, self.weight, self.bias) |
|
return y |
|
|
|
|
|
class RowParallelLinear(Linear): |
|
""" |
|
Linear layer with row parallelism, splitting input features across distributed processes. |
|
|
|
Args: |
|
in_features (int): Total number of input features. |
|
out_features (int): Number of output features. |
|
bias (bool): Whether to include a bias term. Defaults to False. |
|
dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`. |
|
""" |
|
def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None): |
|
assert in_features % world_size == 0 |
|
self.part_in_features = in_features // world_size |
|
super().__init__(self.part_in_features, out_features, bias, dtype) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Forward pass for row parallel linear layer. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor. |
|
|
|
Returns: |
|
torch.Tensor: Transformed tensor with row-parallel computation. |
|
""" |
|
y = linear(x, self.weight) |
|
if world_size > 1: |
|
dist.all_reduce(y) |
|
if self.bias is not None: |
|
y += self.bias |
|
return y |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
""" |
|
Root Mean Square Layer Normalization (RMSNorm). |
|
|
|
Args: |
|
dim (int): Dimension of the input tensor. |
|
eps (float): Epsilon value for numerical stability. Defaults to 1e-6. |
|
""" |
|
def __init__(self, dim: int, eps: float = 1e-6): |
|
super().__init__() |
|
self.dim = dim |
|
self.eps = eps |
|
self.weight = nn.Parameter(torch.ones(dim)) |
|
|
|
def forward(self, x: torch.Tensor): |
|
""" |
|
Forward pass for RMSNorm. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor. |
|
|
|
Returns: |
|
torch.Tensor: Normalized tensor with the same shape as input. |
|
""" |
|
return F.rms_norm(x, (self.dim,), self.weight, self.eps) |
|
|
|
|
|
def precompute_freqs_cis(args: ModelArgs) -> torch.Tensor: |
|
""" |
|
Precomputes frequency-based complex exponential values for rotary positional embeddings. |
|
|
|
Args: |
|
args (ModelArgs): Model arguments containing positional embedding parameters. |
|
|
|
Returns: |
|
torch.Tensor: Precomputed complex exponential values for positional embeddings. |
|
""" |
|
dim = args.qk_rope_head_dim |
|
seqlen = args.max_seq_len |
|
beta_fast = args.beta_fast |
|
beta_slow = args.beta_slow |
|
base = args.rope_theta |
|
factor = args.rope_factor |
|
|
|
def find_correction_dim(num_rotations, dim, base, max_seq_len): |
|
""" |
|
Computes the correction dimension for a given number of rotations in the rotary positional embedding. |
|
|
|
Args: |
|
num_rotations (float): Number of rotations to compute the correction for. |
|
dim (int): Dimensionality of the embedding space. |
|
base (float): Base value for the exponential computation. |
|
max_seq_len (int): Maximum sequence length. |
|
|
|
Returns: |
|
float: The correction dimension based on the input parameters. |
|
""" |
|
return dim * math.log(max_seq_len / (num_rotations * 2 * math.pi)) / (2 * math.log(base)) |
|
|
|
def find_correction_range(low_rot, high_rot, dim, base, max_seq_len): |
|
""" |
|
Computes the range of correction dimensions for rotary positional embeddings. |
|
|
|
Args: |
|
low_rot (float): Lower bound for the number of rotations. |
|
high_rot (float): Upper bound for the number of rotations. |
|
dim (int): Dimensionality of the embedding space. |
|
base (float): Base value for the exponential computation. |
|
max_seq_len (int): Maximum sequence length. |
|
|
|
Returns: |
|
Tuple[int, int]: The range of correction dimensions (low, high), clamped to valid indices. |
|
""" |
|
low = math.floor(find_correction_dim(low_rot, dim, base, max_seq_len)) |
|
high = math.ceil(find_correction_dim(high_rot, dim, base, max_seq_len)) |
|
return max(low, 0), min(high, dim-1) |
|
|
|
def linear_ramp_factor(min, max, dim): |
|
""" |
|
Computes a linear ramp function used to smooth values between a minimum and maximum range. |
|
|
|
Args: |
|
min (float): Minimum value for the ramp function. |
|
max (float): Maximum value for the ramp function. |
|
dim (int): Dimensionality of the ramp tensor. |
|
|
|
Returns: |
|
torch.Tensor: A tensor of shape (dim,) with values linearly interpolated between 0 and 1, |
|
clamped to the range [0, 1]. |
|
""" |
|
if min == max: |
|
max += 0.001 |
|
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min) |
|
ramp_func = torch.clamp(linear_func, 0, 1) |
|
return ramp_func |
|
|
|
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) |
|
if seqlen > args.original_seq_len: |
|
low, high = find_correction_range(beta_fast, beta_slow, dim, base, args.original_seq_len) |
|
smooth = 1 - linear_ramp_factor(low, high, dim // 2) |
|
freqs = freqs / factor * (1 - smooth) + freqs * smooth |
|
|
|
t = torch.arange(seqlen) |
|
freqs = torch.outer(t, freqs) |
|
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) |
|
return freqs_cis |
|
|
|
|
|
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Applies rotary positional embeddings to the input tensor. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor with positional embeddings to be applied. |
|
freqs_cis (torch.Tensor): Precomputed complex exponential values for positional embeddings. |
|
|
|
Returns: |
|
torch.Tensor: Tensor with rotary embeddings applied. |
|
""" |
|
dtype = x.dtype |
|
x = torch.view_as_complex(x.float().view(*x.shape[:-1], -1, 2)) |
|
freqs_cis = freqs_cis.view(1, x.size(1), 1, x.size(-1)) |
|
y = torch.view_as_real(x * freqs_cis).flatten(3) |
|
return y.to(dtype) |
|
|
|
|
|
class MLA(nn.Module): |
|
""" |
|
Multi-Headed Attention Layer (MLA). |
|
|
|
Attributes: |
|
dim (int): Dimensionality of the input features. |
|
n_heads (int): Number of attention heads. |
|
n_local_heads (int): Number of local attention heads for distributed systems. |
|
q_lora_rank (int): Rank for low-rank query projection. |
|
kv_lora_rank (int): Rank for low-rank key/value projection. |
|
qk_nope_head_dim (int): Dimensionality of non-positional query/key projections. |
|
qk_rope_head_dim (int): Dimensionality of rotary-positional query/key projections. |
|
qk_head_dim (int): Total dimensionality of query/key projections. |
|
v_head_dim (int): Dimensionality of value projections. |
|
softmax_scale (float): Scaling factor for softmax in attention computation. |
|
""" |
|
def __init__(self, args: ModelArgs): |
|
super().__init__() |
|
self.dim = args.dim |
|
self.n_heads = args.n_heads |
|
self.n_local_heads = args.n_heads // world_size |
|
self.q_lora_rank = args.q_lora_rank |
|
self.kv_lora_rank = args.kv_lora_rank |
|
self.qk_nope_head_dim = args.qk_nope_head_dim |
|
self.qk_rope_head_dim = args.qk_rope_head_dim |
|
self.qk_head_dim = args.qk_nope_head_dim + args.qk_rope_head_dim |
|
self.v_head_dim = args.v_head_dim |
|
|
|
if self.q_lora_rank == 0: |
|
self.wq = ColumnParallelLinear(self.dim, self.n_heads * self.qk_head_dim) |
|
else: |
|
self.wq_a = Linear(self.dim, self.q_lora_rank) |
|
self.q_norm = RMSNorm(self.q_lora_rank) |
|
self.wq_b = ColumnParallelLinear(self.q_lora_rank, self.n_heads * self.qk_head_dim) |
|
self.wkv_a = Linear(self.dim, self.kv_lora_rank + self.qk_rope_head_dim) |
|
self.kv_norm = RMSNorm(self.kv_lora_rank) |
|
self.wkv_b = ColumnParallelLinear(self.kv_lora_rank, self.n_heads * (self.qk_nope_head_dim + self.v_head_dim)) |
|
self.wo = RowParallelLinear(self.n_heads * self.v_head_dim, self.dim) |
|
self.softmax_scale = self.qk_head_dim ** -0.5 |
|
if args.max_seq_len > args.original_seq_len: |
|
mscale = 0.1 * args.mscale * math.log(args.rope_factor) + 1.0 |
|
self.softmax_scale = self.softmax_scale * mscale * mscale |
|
|
|
if attn_impl == "naive": |
|
self.register_buffer("k_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.qk_head_dim), persistent=False) |
|
self.register_buffer("v_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.v_head_dim), persistent=False) |
|
else: |
|
self.register_buffer("kv_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.kv_lora_rank), persistent=False) |
|
self.register_buffer("pe_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.qk_rope_head_dim), persistent=False) |
|
|
|
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]): |
|
""" |
|
Forward pass for the Multi-Headed Attention Layer (MLA). |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor of shape (batch_size, seq_len, dim). |
|
start_pos (int): Starting position in the sequence for caching. |
|
freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings. |
|
mask (Optional[torch.Tensor]): Mask tensor to exclude certain positions from attention. |
|
|
|
Returns: |
|
torch.Tensor: Output tensor with the same shape as the input. |
|
""" |
|
bsz, seqlen, _ = x.size() |
|
end_pos = start_pos + seqlen |
|
if self.q_lora_rank == 0: |
|
q = self.wq(x) |
|
else: |
|
q = self.wq_b(self.q_norm(self.wq_a(x))) |
|
q = q.view(bsz, seqlen, self.n_local_heads, self.qk_head_dim) |
|
q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1) |
|
q_pe = apply_rotary_emb(q_pe, freqs_cis) |
|
kv = self.wkv_a(x) |
|
kv, k_pe = torch.split(kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1) |
|
k_pe = apply_rotary_emb(k_pe.unsqueeze(2), freqs_cis) |
|
if attn_impl == "naive": |
|
q = torch.cat([q_nope, q_pe], dim=-1) |
|
kv = self.wkv_b(self.kv_norm(kv)) |
|
kv = kv.view(bsz, seqlen, self.n_local_heads, self.qk_nope_head_dim + self.v_head_dim) |
|
k_nope, v = torch.split(kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1) |
|
k = torch.cat([k_nope, k_pe.expand(-1, -1, self.n_local_heads, -1)], dim=-1) |
|
self.k_cache[:bsz, start_pos:end_pos] = k |
|
self.v_cache[:bsz, start_pos:end_pos] = v |
|
scores = torch.einsum("bshd,bthd->bsht", q, self.k_cache[:bsz, :end_pos]) * self.softmax_scale |
|
else: |
|
wkv_b = self.wkv_b.weight if self.wkv_b.scale is None else weight_dequant(self.wkv_b.weight, self.wkv_b.scale, block_size) |
|
wkv_b = wkv_b.view(self.n_local_heads, -1, self.kv_lora_rank) |
|
q_nope = torch.einsum("bshd,hdc->bshc", q_nope, wkv_b[:, :self.qk_nope_head_dim]) |
|
self.kv_cache[:bsz, start_pos:end_pos] = self.kv_norm(kv) |
|
self.pe_cache[:bsz, start_pos:end_pos] = k_pe.squeeze(2) |
|
scores = (torch.einsum("bshc,btc->bsht", q_nope, self.kv_cache[:bsz, :end_pos]) + |
|
torch.einsum("bshr,btr->bsht", q_pe, self.pe_cache[:bsz, :end_pos])) * self.softmax_scale |
|
if mask is not None: |
|
scores += mask.unsqueeze(1) |
|
scores = scores.softmax(dim=-1, dtype=torch.float32).type_as(x) |
|
if attn_impl == "naive": |
|
x = torch.einsum("bsht,bthd->bshd", scores, self.v_cache[:bsz, :end_pos]) |
|
else: |
|
x = torch.einsum("bsht,btc->bshc", scores, self.kv_cache[:bsz, :end_pos]) |
|
x = torch.einsum("bshc,hdc->bshd", x, wkv_b[:, -self.v_head_dim:]) |
|
x = self.wo(x.flatten(2)) |
|
return x |
|
|
|
|
|
class MLP(nn.Module): |
|
""" |
|
Multi-Layer Perceptron (MLP) used as a feed-forward layer. |
|
|
|
Attributes: |
|
w1 (nn.Module): Linear layer for input-to-hidden transformation. |
|
w2 (nn.Module): Linear layer for hidden-to-output transformation. |
|
w3 (nn.Module): Additional linear layer for feature transformation. |
|
""" |
|
def __init__(self, dim: int, inter_dim: int): |
|
""" |
|
Initializes the MLP layer. |
|
|
|
Args: |
|
dim (int): Input and output dimensionality. |
|
inter_dim (int): Hidden layer dimensionality. |
|
""" |
|
super().__init__() |
|
self.w1 = ColumnParallelLinear(dim, inter_dim) |
|
self.w2 = RowParallelLinear(inter_dim, dim) |
|
self.w3 = ColumnParallelLinear(dim, inter_dim) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Forward pass for the MLP layer. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor. |
|
|
|
Returns: |
|
torch.Tensor: Output tensor after MLP computation. |
|
""" |
|
return self.w2(F.silu(self.w1(x)) * self.w3(x)) |
|
|
|
|
|
class Gate(nn.Module): |
|
""" |
|
Gating mechanism for routing inputs in a mixture-of-experts (MoE) model. |
|
|
|
Attributes: |
|
dim (int): Dimensionality of input features. |
|
topk (int): Number of top experts activated for each input. |
|
n_groups (int): Number of groups for routing. |
|
topk_groups (int): Number of groups to route inputs to. |
|
score_func (str): Scoring function ('softmax' or 'sigmoid'). |
|
route_scale (float): Scaling factor for routing weights. |
|
weight (torch.nn.Parameter): Learnable weights for the gate. |
|
bias (Optional[torch.nn.Parameter]): Optional bias term for the gate. |
|
""" |
|
def __init__(self, args: ModelArgs): |
|
""" |
|
Initializes the Gate module. |
|
|
|
Args: |
|
args (ModelArgs): Model arguments containing gating parameters. |
|
""" |
|
super().__init__() |
|
self.dim = args.dim |
|
self.topk = args.n_activated_experts |
|
self.n_groups = args.n_expert_groups |
|
self.topk_groups = args.n_limited_groups |
|
self.score_func = args.score_func |
|
self.route_scale = args.route_scale |
|
self.weight = nn.Parameter(torch.empty(args.n_routed_experts, args.dim)) |
|
self.bias = nn.Parameter(torch.empty(args.n_routed_experts)) if self.dim == 7168 else None |
|
|
|
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Forward pass for the gating mechanism. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor. |
|
|
|
Returns: |
|
Tuple[torch.Tensor, torch.Tensor]: Routing weights and selected expert indices. |
|
""" |
|
scores = linear(x, self.weight) |
|
if self.score_func == "softmax": |
|
scores = scores.softmax(dim=-1, dtype=torch.float32) |
|
else: |
|
scores = scores.sigmoid() |
|
original_scores = scores |
|
if self.bias is not None: |
|
scores = scores + self.bias |
|
if self.n_groups > 1: |
|
scores = scores.view(x.size(0), self.n_groups, -1) |
|
if self.bias is None: |
|
group_scores = scores.amax(dim=-1) |
|
else: |
|
group_scores = scores.topk(2, dim=-1)[0].sum(dim=-1) |
|
indices = group_scores.topk(self.topk_groups, dim=-1)[1] |
|
mask = torch.zeros_like(scores[..., 0]).scatter_(1, indices, True) |
|
scores = (scores * mask.unsqueeze(-1)).flatten(1) |
|
indices = torch.topk(scores, self.topk, dim=-1)[1] |
|
weights = original_scores.gather(1, indices) |
|
if self.score_func == "sigmoid": |
|
weights /= weights.sum(dim=-1, keepdim=True) |
|
weights *= self.route_scale |
|
return weights.type_as(x), indices |
|
|
|
|
|
class Expert(nn.Module): |
|
""" |
|
Expert layer for Mixture-of-Experts (MoE) models. |
|
|
|
Attributes: |
|
w1 (nn.Module): Linear layer for input-to-hidden transformation. |
|
w2 (nn.Module): Linear layer for hidden-to-output transformation. |
|
w3 (nn.Module): Additional linear layer for feature transformation. |
|
""" |
|
def __init__(self, dim: int, inter_dim: int): |
|
""" |
|
Initializes the Expert layer. |
|
|
|
Args: |
|
dim (int): Input and output dimensionality. |
|
inter_dim (int): Hidden layer dimensionality. |
|
""" |
|
super().__init__() |
|
self.w1 = Linear(dim, inter_dim) |
|
self.w2 = Linear(inter_dim, dim) |
|
self.w3 = Linear(dim, inter_dim) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Forward pass for the Expert layer. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor. |
|
|
|
Returns: |
|
torch.Tensor: Output tensor after expert computation. |
|
""" |
|
return self.w2(F.silu(self.w1(x)) * self.w3(x)) |
|
|
|
|
|
class MoE(nn.Module): |
|
""" |
|
Mixture-of-Experts (MoE) module. |
|
|
|
Attributes: |
|
dim (int): Dimensionality of input features. |
|
n_routed_experts (int): Total number of experts in the model. |
|
n_local_experts (int): Number of experts handled locally in distributed systems. |
|
n_activated_experts (int): Number of experts activated for each input. |
|
gate (nn.Module): Gating mechanism to route inputs to experts. |
|
experts (nn.ModuleList): List of expert modules. |
|
shared_experts (nn.Module): Shared experts applied to all inputs. |
|
""" |
|
def __init__(self, args: ModelArgs): |
|
""" |
|
Initializes the MoE module. |
|
|
|
Args: |
|
args (ModelArgs): Model arguments containing MoE parameters. |
|
""" |
|
super().__init__() |
|
self.dim = args.dim |
|
assert args.n_routed_experts % world_size == 0 |
|
self.n_routed_experts = args.n_routed_experts |
|
self.n_local_experts = args.n_routed_experts // world_size |
|
self.n_activated_experts = args.n_activated_experts |
|
self.experts_start_idx = rank * self.n_local_experts |
|
self.experts_end_idx = self.experts_start_idx + self.n_local_experts |
|
self.gate = Gate(args) |
|
self.experts = nn.ModuleList([Expert(args.dim, args.moe_inter_dim) if self.experts_start_idx <= i < self.experts_end_idx else None |
|
for i in range(self.n_routed_experts)]) |
|
self.shared_experts = MLP(args.dim, args.n_shared_experts * args.moe_inter_dim) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Forward pass for the MoE module. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor. |
|
|
|
Returns: |
|
torch.Tensor: Output tensor after expert routing and computation. |
|
""" |
|
shape = x.size() |
|
x = x.view(-1, self.dim) |
|
weights, indices = self.gate(x) |
|
y = torch.zeros_like(x) |
|
counts = torch.bincount(indices.flatten(), minlength=self.n_routed_experts).tolist() |
|
for i in range(self.experts_start_idx, self.experts_end_idx): |
|
if counts[i] == 0: |
|
continue |
|
expert = self.experts[i] |
|
idx, top = torch.where(indices == i) |
|
y[idx] += expert(x[idx]) * weights[idx, top, None] |
|
z = self.shared_experts(x) |
|
if world_size > 1: |
|
dist.all_reduce(y) |
|
return (y + z).view(shape) |
|
|
|
|
|
class Block(nn.Module): |
|
""" |
|
Transformer block combining attention and feed-forward layers. |
|
|
|
Attributes: |
|
attn (nn.Module): Attention layer (MLA). |
|
ffn (nn.Module): Feed-forward network (MLP or MoE). |
|
attn_norm (nn.Module): Layer normalization for attention. |
|
ffn_norm (nn.Module): Layer normalization for feed-forward network. |
|
""" |
|
def __init__(self, layer_id: int, args: ModelArgs): |
|
""" |
|
Initializes the Transformer block. |
|
|
|
Args: |
|
layer_id (int): Layer index in the transformer. |
|
args (ModelArgs): Model arguments containing block parameters. |
|
""" |
|
super().__init__() |
|
self.attn = MLA(args) |
|
self.ffn = MLP(args.dim, args.inter_dim) if layer_id < args.n_dense_layers else MoE(args) |
|
self.attn_norm = RMSNorm(args.dim) |
|
self.ffn_norm = RMSNorm(args.dim) |
|
|
|
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]) -> torch.Tensor: |
|
""" |
|
Forward pass for the Transformer block. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor. |
|
start_pos (int): Starting position in the sequence. |
|
freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings. |
|
mask (Optional[torch.Tensor]): Mask tensor to exclude certain positions from attention. |
|
|
|
Returns: |
|
torch.Tensor: Output tensor after block computation. |
|
""" |
|
x = x + self.attn(self.attn_norm(x), start_pos, freqs_cis, mask) |
|
x = x + self.ffn(self.ffn_norm(x)) |
|
return x |
|
|
|
|
|
class Transformer(nn.Module): |
|
""" |
|
Transformer model with positional embeddings, multiple layers, and output projection. |
|
|
|
Attributes: |
|
max_seq_len (int): Maximum sequence length for the transformer. |
|
embed (nn.Module): Embedding layer for input tokens. |
|
layers (torch.nn.ModuleList): List of transformer blocks. |
|
norm (nn.Module): Layer normalization applied after all blocks. |
|
head (nn.Module): Output projection layer mapping to vocabulary size. |
|
freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings. |
|
""" |
|
def __init__(self, args: ModelArgs): |
|
""" |
|
Initializes the Transformer model. |
|
|
|
Args: |
|
args (ModelArgs): Model arguments containing transformer parameters. |
|
""" |
|
global world_size, rank |
|
world_size = dist.get_world_size() if dist.is_initialized() else 1 |
|
rank = dist.get_rank() if dist.is_initialized() else 0 |
|
Linear.dtype = torch.float8_e4m3fn if args.dtype == "fp8" else torch.bfloat16 |
|
super().__init__() |
|
self.max_seq_len = args.max_seq_len |
|
self.embed = ParallelEmbedding(args.vocab_size, args.dim) |
|
self.layers = torch.nn.ModuleList() |
|
for layer_id in range(args.n_layers): |
|
self.layers.append(Block(layer_id, args)) |
|
self.norm = RMSNorm(args.dim) |
|
self.head = ColumnParallelLinear(args.dim, args.vocab_size, dtype=torch.get_default_dtype()) |
|
self.register_buffer("freqs_cis", precompute_freqs_cis(args), persistent=False) |
|
|
|
@torch.inference_mode() |
|
def forward(self, tokens: torch.Tensor, start_pos: int = 0): |
|
""" |
|
Forward pass for the Transformer model. |
|
|
|
Args: |
|
tokens (torch.Tensor): Input tensor of token IDs with shape (batch_size, seq_len). |
|
start_pos (int, optional): Starting position in the sequence for rotary embeddings. Defaults to 0. |
|
|
|
Returns: |
|
torch.Tensor: Logits tensor of shape (batch_size, vocab_size). |
|
""" |
|
seqlen = tokens.size(1) |
|
h = self.embed(tokens) |
|
freqs_cis = self.freqs_cis[start_pos:start_pos+seqlen] |
|
mask = None |
|
if seqlen > 1: |
|
mask = torch.full((seqlen, seqlen), float("-inf"), device=tokens.device).triu_(1) |
|
for layer in self.layers: |
|
h = layer(h, start_pos, freqs_cis, mask) |
|
h = self.norm(h)[:, -1] |
|
logits = self.head(h) |
|
if world_size > 1: |
|
all_logits = [torch.empty_like(logits) for _ in range(world_size)] |
|
dist.all_gather(all_logits, logits) |
|
logits = torch.cat(all_logits, dim=-1) |
|
return logits |
|
|
|
|
|
if __name__ == "__main__": |
|
torch.set_default_dtype(torch.bfloat16) |
|
torch.set_default_device("cuda") |
|
torch.manual_seed(0) |
|
args = ModelArgs() |
|
x = torch.randint(0, args.vocab_size, (2, 128)) |
|
model = Transformer(args) |
|
print(model(x).size()) |
|
|