JonnyOH commited on
Commit
3f27614
·
verified ·
1 Parent(s): ef14ed2

Upload 9 files

Browse files
configs/config_16B.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "vocab_size": 102400,
3
+ "dim": 2048,
4
+ "inter_dim": 10944,
5
+ "moe_inter_dim": 1408,
6
+ "n_layers": 27,
7
+ "n_dense_layers": 1,
8
+ "n_heads": 16,
9
+ "n_routed_experts": 64,
10
+ "n_shared_experts": 2,
11
+ "n_activated_experts": 6,
12
+ "route_scale": 1.0,
13
+ "q_lora_rank": 0,
14
+ "kv_lora_rank": 512,
15
+ "qk_nope_head_dim": 128,
16
+ "qk_rope_head_dim": 64,
17
+ "v_head_dim": 128,
18
+ "mscale": 0.707
19
+ }
configs/config_236B.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "vocab_size": 102400,
3
+ "dim": 5120,
4
+ "inter_dim": 12288,
5
+ "moe_inter_dim": 1536,
6
+ "n_layers": 60,
7
+ "n_dense_layers": 1,
8
+ "n_heads": 128,
9
+ "n_routed_experts": 160,
10
+ "n_shared_experts": 2,
11
+ "n_activated_experts": 6,
12
+ "n_expert_groups": 8,
13
+ "n_limited_groups": 3,
14
+ "route_scale": 16.0,
15
+ "q_lora_rank": 1536,
16
+ "kv_lora_rank": 512,
17
+ "qk_nope_head_dim": 128,
18
+ "qk_rope_head_dim": 64,
19
+ "v_head_dim": 128
20
+ }
configs/config_671B.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "vocab_size": 129280,
3
+ "dim": 7168,
4
+ "inter_dim": 18432,
5
+ "moe_inter_dim": 2048,
6
+ "n_layers": 61,
7
+ "n_dense_layers": 3,
8
+ "n_heads": 128,
9
+ "n_routed_experts": 256,
10
+ "n_shared_experts": 1,
11
+ "n_activated_experts": 8,
12
+ "n_expert_groups": 8,
13
+ "n_limited_groups": 4,
14
+ "route_scale": 2.5,
15
+ "score_func": "sigmoid",
16
+ "q_lora_rank": 1536,
17
+ "kv_lora_rank": 512,
18
+ "qk_nope_head_dim": 128,
19
+ "qk_rope_head_dim": 64,
20
+ "v_head_dim": 128,
21
+ "dtype": "fp8"
22
+ }
convert.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+ from argparse import ArgumentParser
4
+ from glob import glob
5
+ from tqdm import tqdm, trange
6
+
7
+ import torch
8
+ from safetensors.torch import safe_open, save_file
9
+
10
+
11
+ mapping = {
12
+ "embed_tokens": ("embed", 0),
13
+ "input_layernorm": ("attn_norm", None),
14
+ "post_attention_layernorm": ("ffn_norm", None),
15
+ "q_proj": ("wq", 0),
16
+ "q_a_proj": ("wq_a", None),
17
+ "q_a_layernorm": ("q_norm", None),
18
+ "q_b_proj": ("wq_b", 0),
19
+ "kv_a_proj_with_mqa": ("wkv_a", None),
20
+ "kv_a_layernorm": ("kv_norm", None),
21
+ "kv_b_proj": ("wkv_b", 0),
22
+ "o_proj": ("wo", 1),
23
+ "gate": ("gate", None),
24
+ "gate_proj": ("w1", 0),
25
+ "down_proj": ("w2", 1),
26
+ "up_proj": ("w3", 0),
27
+ "norm": ("norm", None),
28
+ "lm_head": ("head", 0),
29
+ "scale": ("scale", None),
30
+ }
31
+
32
+
33
+ def main(hf_ckpt_path, save_path, n_experts, mp):
34
+ """
35
+ Converts and saves model checkpoint files into a specified format.
36
+
37
+ Args:
38
+ hf_ckpt_path (str): Path to the directory containing the input checkpoint files.
39
+ save_path (str): Path to the directory where the converted checkpoint files will be saved.
40
+ n_experts (int): Total number of experts in the model.
41
+ mp (int): Model parallelism factor.
42
+
43
+ Returns:
44
+ None
45
+ """
46
+ torch.set_num_threads(8)
47
+ n_local_experts = n_experts // mp
48
+ state_dicts = [{} for _ in range(mp)]
49
+
50
+ for file_path in tqdm(glob(os.path.join(hf_ckpt_path, "*.safetensors"))):
51
+ with safe_open(file_path, framework="pt", device="cpu") as f:
52
+ for name in f.keys():
53
+ if "model.layers.61" in name:
54
+ continue
55
+ param: torch.Tensor = f.get_tensor(name)
56
+ if name.startswith("model."):
57
+ name = name[len("model."):]
58
+ name = name.replace("self_attn", "attn")
59
+ name = name.replace("mlp", "ffn")
60
+ name = name.replace("weight_scale_inv", "scale")
61
+ name = name.replace("e_score_correction_bias", "bias")
62
+ key = name.split(".")[-2]
63
+ assert key in mapping
64
+ new_key, dim = mapping[key]
65
+ name = name.replace(key, new_key)
66
+ for i in range(mp):
67
+ new_param = param
68
+ if "experts" in name and "shared_experts" not in name:
69
+ idx = int(name.split(".")[-3])
70
+ if idx < i * n_local_experts or idx >= (i + 1) * n_local_experts:
71
+ continue
72
+ elif dim is not None:
73
+ assert param.size(dim) % mp == 0
74
+ shard_size = param.size(dim) // mp
75
+ new_param = param.narrow(dim, i * shard_size, shard_size).contiguous()
76
+ state_dicts[i][name] = new_param
77
+
78
+ os.makedirs(save_path, exist_ok=True)
79
+
80
+ for i in trange(mp):
81
+ save_file(state_dicts[i], os.path.join(save_path, f"model{i}-mp{mp}.safetensors"))
82
+
83
+ for file_path in glob(os.path.join(hf_ckpt_path, "*token*")):
84
+ new_file_path = os.path.join(save_path, os.path.basename(file_path))
85
+ shutil.copyfile(file_path, new_file_path)
86
+
87
+
88
+ if __name__ == "__main__":
89
+ parser = ArgumentParser()
90
+ parser.add_argument("--hf-ckpt-path", type=str, required=True)
91
+ parser.add_argument("--save-path", type=str, required=True)
92
+ parser.add_argument("--n-experts", type=int, required=True)
93
+ parser.add_argument("--model-parallel", type=int, required=True)
94
+ args = parser.parse_args()
95
+ assert args.n_experts % args.model_parallel == 0
96
+ main(args.hf_ckpt_path, args.save_path, args.n_experts, args.model_parallel)
fp8_cast_bf16.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ from argparse import ArgumentParser
4
+ from glob import glob
5
+ from tqdm import tqdm
6
+
7
+ import torch
8
+ from safetensors.torch import load_file, save_file
9
+
10
+ from kernel import weight_dequant
11
+
12
+ def main(fp8_path, bf16_path):
13
+ """
14
+ Converts FP8 weights to BF16 and saves the converted weights.
15
+
16
+ This function reads FP8 weights from the specified directory, converts them to BF16,
17
+ and saves the converted weights to another specified directory. It also updates the
18
+ model index file to reflect the changes.
19
+
20
+ Args:
21
+ fp8_path (str): The path to the directory containing the FP8 weights and model index file.
22
+ bf16_path (str): The path to the directory where the converted BF16 weights will be saved.
23
+
24
+ Raises:
25
+ KeyError: If a required scale_inv tensor is missing for a weight.
26
+
27
+ Notes:
28
+ - The function assumes that the FP8 weights are stored in safetensor files.
29
+ - The function caches loaded safetensor files to optimize memory usage.
30
+ - The function updates the model index file to remove references to scale_inv tensors.
31
+ """
32
+ torch.set_default_dtype(torch.bfloat16)
33
+ os.makedirs(bf16_path, exist_ok=True)
34
+ model_index_file = os.path.join(fp8_path, "model.safetensors.index.json")
35
+ with open(model_index_file, "r") as f:
36
+ model_index = json.load(f)
37
+ weight_map = model_index["weight_map"]
38
+
39
+ # Cache for loaded safetensor files
40
+ loaded_files = {}
41
+ fp8_weight_names = []
42
+
43
+ # Helper function to get tensor from the correct file
44
+ def get_tensor(tensor_name):
45
+ """
46
+ Retrieves a tensor from the cached safetensor files or loads it from disk if not cached.
47
+
48
+ Args:
49
+ tensor_name (str): The name of the tensor to retrieve.
50
+
51
+ Returns:
52
+ torch.Tensor: The retrieved tensor.
53
+
54
+ Raises:
55
+ KeyError: If the tensor does not exist in the safetensor file.
56
+ """
57
+ file_name = weight_map[tensor_name]
58
+ if file_name not in loaded_files:
59
+ file_path = os.path.join(fp8_path, file_name)
60
+ loaded_files[file_name] = load_file(file_path, device="cuda")
61
+ return loaded_files[file_name][tensor_name]
62
+
63
+ safetensor_files = list(glob(os.path.join(fp8_path, "*.safetensors")))
64
+ safetensor_files.sort()
65
+ for safetensor_file in tqdm(safetensor_files):
66
+ file_name = os.path.basename(safetensor_file)
67
+ current_state_dict = load_file(safetensor_file, device="cuda")
68
+ loaded_files[file_name] = current_state_dict
69
+
70
+ new_state_dict = {}
71
+ for weight_name, weight in current_state_dict.items():
72
+ if weight_name.endswith("_scale_inv"):
73
+ continue
74
+ elif weight.element_size() == 1: # FP8 weight
75
+ scale_inv_name = f"{weight_name}_scale_inv"
76
+ try:
77
+ # Get scale_inv from the correct file
78
+ scale_inv = get_tensor(scale_inv_name)
79
+ fp8_weight_names.append(weight_name)
80
+ new_state_dict[weight_name] = weight_dequant(weight, scale_inv)
81
+ except KeyError:
82
+ print(f"Warning: Missing scale_inv tensor for {weight_name}, skipping conversion")
83
+ new_state_dict[weight_name] = weight
84
+ else:
85
+ new_state_dict[weight_name] = weight
86
+
87
+ new_safetensor_file = os.path.join(bf16_path, file_name)
88
+ save_file(new_state_dict, new_safetensor_file)
89
+
90
+ # Memory management: keep only the 2 most recently used files
91
+ if len(loaded_files) > 2:
92
+ oldest_file = next(iter(loaded_files))
93
+ del loaded_files[oldest_file]
94
+ torch.cuda.empty_cache()
95
+
96
+ # Update model index
97
+ new_model_index_file = os.path.join(bf16_path, "model.safetensors.index.json")
98
+ for weight_name in fp8_weight_names:
99
+ scale_inv_name = f"{weight_name}_scale_inv"
100
+ if scale_inv_name in weight_map:
101
+ weight_map.pop(scale_inv_name)
102
+ with open(new_model_index_file, "w") as f:
103
+ json.dump({"metadata": {}, "weight_map": weight_map}, f, indent=2)
104
+
105
+
106
+ if __name__ == "__main__":
107
+ parser = ArgumentParser()
108
+ parser.add_argument("--input-fp8-hf-path", type=str, required=True)
109
+ parser.add_argument("--output-bf16-hf-path", type=str, required=True)
110
+ args = parser.parse_args()
111
+ main(args.input_fp8_hf_path, args.output_bf16_hf_path)
112
+
generate.py ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ from argparse import ArgumentParser
4
+ from typing import List
5
+
6
+ import torch
7
+ import torch.distributed as dist
8
+ from transformers import AutoTokenizer
9
+ from safetensors.torch import load_model
10
+
11
+ from model import Transformer, ModelArgs
12
+
13
+
14
+ def sample(logits, temperature: float = 1.0):
15
+ """
16
+ Samples a token from the logits using temperature scaling.
17
+
18
+ Args:
19
+ logits (torch.Tensor): The logits tensor for token predictions.
20
+ temperature (float, optional): Temperature for scaling logits. Defaults to 1.0.
21
+
22
+ Returns:
23
+ torch.Tensor: The sampled token.
24
+ """
25
+ logits = logits / max(temperature, 1e-5)
26
+ probs = torch.softmax(logits, dim=-1)
27
+ return probs.div_(torch.empty_like(probs).exponential_(1)).argmax(dim=-1)
28
+
29
+
30
+ @torch.inference_mode()
31
+ def generate(
32
+ model: Transformer,
33
+ prompt_tokens: List[List[int]],
34
+ max_new_tokens: int,
35
+ eos_id: int,
36
+ temperature: float = 1.0
37
+ ) -> List[List[int]]:
38
+ """
39
+ Generates new tokens based on the given prompt tokens using the specified model.
40
+
41
+ Args:
42
+ model (Transformer): The transformer model used for token generation.
43
+ prompt_tokens (List[List[int]]): A list of lists containing the prompt tokens for each sequence.
44
+ max_new_tokens (int): The maximum number of new tokens to generate.
45
+ eos_id (int): The end-of-sequence token ID.
46
+ temperature (float, optional): The temperature value for sampling. Defaults to 1.0.
47
+
48
+ Returns:
49
+ List[List[int]]: A list of lists containing the generated tokens for each sequence.
50
+ """
51
+ prompt_lens = [len(t) for t in prompt_tokens]
52
+ assert max(prompt_lens) <= model.max_seq_len
53
+ total_len = min(model.max_seq_len, max_new_tokens + max(prompt_lens))
54
+ tokens = torch.full((len(prompt_tokens), total_len), -1, dtype=torch.long, device="cuda")
55
+ for i, t in enumerate(prompt_tokens):
56
+ tokens[i, :len(t)] = torch.tensor(t, dtype=torch.long, device="cuda")
57
+ prev_pos = 0
58
+ finished = torch.tensor([False] * len(prompt_tokens), device="cuda")
59
+ prompt_mask = tokens != -1
60
+ for cur_pos in range(min(prompt_lens), total_len):
61
+ logits = model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
62
+ if temperature > 0:
63
+ next_token = sample(logits, temperature)
64
+ else:
65
+ next_token = logits.argmax(dim=-1)
66
+ next_token = torch.where(prompt_mask[:, cur_pos], tokens[:, cur_pos], next_token)
67
+ tokens[:, cur_pos] = next_token
68
+ finished |= torch.logical_and(~prompt_mask[:, cur_pos], next_token == eos_id)
69
+ prev_pos = cur_pos
70
+ if finished.all():
71
+ break
72
+ completion_tokens = []
73
+ for i, toks in enumerate(tokens.tolist()):
74
+ toks = toks[prompt_lens[i]:prompt_lens[i]+max_new_tokens]
75
+ if eos_id in toks:
76
+ toks = toks[:toks.index(eos_id)]
77
+ completion_tokens.append(toks)
78
+ return completion_tokens
79
+
80
+
81
+ def main(
82
+ ckpt_path: str,
83
+ config: str,
84
+ input_file: str = "",
85
+ interactive: bool = True,
86
+ max_new_tokens: int = 100,
87
+ temperature: float = 1.0,
88
+ ) -> None:
89
+ """
90
+ Main function to load the model and perform interactive or batch text generation.
91
+
92
+ Args:
93
+ ckpt_path (str): Path to the model checkpoint directory.
94
+ config (str): Path to the model configuration file.
95
+ input_file (str, optional): Path to a file containing input prompts. Defaults to "".
96
+ interactive (bool, optional): Whether to run in interactive mode. Defaults to True.
97
+ max_new_tokens (int, optional): Maximum number of new tokens to generate. Defaults to 100.
98
+ temperature (float, optional): Temperature for sampling. Defaults to 1.0.
99
+ """
100
+ world_size = int(os.getenv("WORLD_SIZE", "1"))
101
+ rank = int(os.getenv("RANK", "0"))
102
+ local_rank = int(os.getenv("LOCAL_RANK", "0"))
103
+ if world_size > 1:
104
+ dist.init_process_group("nccl")
105
+ global print
106
+ if rank != 0:
107
+ print = lambda *_, **__: None
108
+ torch.cuda.set_device(local_rank)
109
+ torch.set_default_dtype(torch.bfloat16)
110
+ torch.set_num_threads(8)
111
+ torch.manual_seed(965)
112
+ with open(config) as f:
113
+ args = ModelArgs(**json.load(f))
114
+ print(args)
115
+ with torch.device("cuda"):
116
+ model = Transformer(args)
117
+ tokenizer = AutoTokenizer.from_pretrained(ckpt_path)
118
+ tokenizer.decode(generate(model, [tokenizer.encode("DeepSeek")], 2, -1, 1.)[0])
119
+ load_model(model, os.path.join(ckpt_path, f"model{rank}-mp{world_size}.safetensors"))
120
+
121
+ if interactive:
122
+ messages = []
123
+ while True:
124
+ if world_size == 1:
125
+ prompt = input(">>> ")
126
+ elif rank == 0:
127
+ prompt = input(">>> ")
128
+ objects = [prompt]
129
+ dist.broadcast_object_list(objects, 0)
130
+ else:
131
+ objects = [None]
132
+ dist.broadcast_object_list(objects, 0)
133
+ prompt = objects[0]
134
+ if prompt == "/exit":
135
+ break
136
+ elif prompt == "/clear":
137
+ messages.clear()
138
+ continue
139
+ messages.append({"role": "user", "content": prompt})
140
+ prompt_tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
141
+ completion_tokens = generate(model, [prompt_tokens], max_new_tokens, tokenizer.eos_token_id, temperature)
142
+ completion = tokenizer.decode(completion_tokens[0], skip_special_tokens=True)
143
+ print(completion)
144
+ messages.append({"role": "assistant", "content": completion})
145
+ else:
146
+ with open(input_file) as f:
147
+ prompts = [line.strip() for line in f.readlines()]
148
+ assert len(prompts) <= args.max_batch_size
149
+ prompt_tokens = [tokenizer.apply_chat_template([{"role": "user", "content": prompt}], add_generation_prompt=True) for prompt in prompts]
150
+ completion_tokens = generate(model, prompt_tokens, max_new_tokens, tokenizer.eos_token_id, temperature)
151
+ completions = tokenizer.batch_decode(completion_tokens, skip_special_tokens=True)
152
+ for prompt, completion in zip(prompts, completions):
153
+ print("Prompt:", prompt)
154
+ print("Completion:", completion)
155
+ print()
156
+
157
+ if world_size > 1:
158
+ dist.destroy_process_group()
159
+
160
+
161
+ if __name__ == "__main__":
162
+ """
163
+ Command-line interface for distributed text generation.
164
+
165
+ Arguments:
166
+ --ckpt-path (str): Path to the model checkpoint directory.
167
+ --config (str): Path to the model configuration file.
168
+ --input-file (str, optional): File containing prompts for batch processing.
169
+ --interactive (bool, optional): Enable interactive mode for generating text.
170
+ --max-new-tokens (int, optional): Maximum number of new tokens to generate. Defaults to 200.
171
+ --temperature (float, optional): Temperature for sampling. Defaults to 0.2.
172
+
173
+ Raises:
174
+ AssertionError: If neither input-file nor interactive mode is specified.
175
+ """
176
+ parser = ArgumentParser()
177
+ parser.add_argument("--ckpt-path", type=str, required=True)
178
+ parser.add_argument("--config", type=str, required=True)
179
+ parser.add_argument("--input-file", type=str, default="")
180
+ parser.add_argument("--interactive", action="store_true")
181
+ parser.add_argument("--max-new-tokens", type=int, default=200)
182
+ parser.add_argument("--temperature", type=float, default=0.2)
183
+ args = parser.parse_args()
184
+ assert args.input_file or args.interactive
185
+ main(args.ckpt_path, args.config, args.input_file, args.interactive, args.max_new_tokens, args.temperature)
kernel.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Tuple
2
+
3
+ import torch
4
+ import triton
5
+ import triton.language as tl
6
+ from triton import Config
7
+
8
+
9
+ @triton.jit
10
+ def act_quant_kernel(x_ptr, y_ptr, s_ptr, BLOCK_SIZE: tl.constexpr):
11
+ """
12
+ Quantizes the input tensor `x_ptr` and stores the result in `y_ptr` and the scaling factor in `s_ptr`.
13
+
14
+ Args:
15
+ x_ptr (triton.Pointer): Pointer to the input tensor.
16
+ y_ptr (triton.Pointer): Pointer to the output tensor where quantized values will be stored.
17
+ s_ptr (triton.Pointer): Pointer to the output tensor where scaling factors will be stored.
18
+ BLOCK_SIZE (tl.constexpr): The size of the block to be processed by each program instance.
19
+
20
+ Returns:
21
+ None
22
+ """
23
+ pid = tl.program_id(axis=0)
24
+ offs = pid * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
25
+ x = tl.load(x_ptr + offs).to(tl.float32)
26
+ s = tl.max(tl.abs(x)) / 448.
27
+ y = x / s
28
+ y = y.to(y_ptr.dtype.element_ty)
29
+ tl.store(y_ptr + offs, y)
30
+ tl.store(s_ptr + pid, s)
31
+
32
+
33
+ def act_quant(x: torch.Tensor, block_size: int = 128) -> Tuple[torch.Tensor, torch.Tensor]:
34
+ """
35
+ Quantizes the input tensor `x` using block-wise quantization.
36
+
37
+ Args:
38
+ x (torch.Tensor): The input tensor to be quantized. Must be contiguous and its last dimension size must be divisible by `block_size`.
39
+ block_size (int, optional): The size of the blocks to be used for quantization. Default is 128.
40
+
41
+ Returns:
42
+ Tuple[torch.Tensor, torch.Tensor]: A tuple containing:
43
+ - The quantized tensor with dtype `torch.float8_e4m3fn`.
44
+ - A tensor of scaling factors with dtype `torch.float32`.
45
+ """
46
+ assert x.is_contiguous()
47
+ assert x.size(-1) % block_size == 0
48
+ y = torch.empty_like(x, dtype=torch.float8_e4m3fn)
49
+ s = x.new_empty(*x.size()[:-1], x.size(-1) // block_size, dtype=torch.float32)
50
+ grid = lambda meta: (triton.cdiv(x.numel(), meta['BLOCK_SIZE']), )
51
+ act_quant_kernel[grid](x, y, s, BLOCK_SIZE=block_size)
52
+ return y, s
53
+
54
+
55
+ @triton.jit
56
+ def weight_dequant_kernel(x_ptr, s_ptr, y_ptr, M, N, BLOCK_SIZE: tl.constexpr):
57
+ """
58
+ Dequantizes weights using the provided scaling factors and stores the result.
59
+
60
+ Args:
61
+ x_ptr (tl.pointer): Pointer to the quantized weights.
62
+ s_ptr (tl.pointer): Pointer to the scaling factors.
63
+ y_ptr (tl.pointer): Pointer to the output buffer for dequantized weights.
64
+ M (int): Number of rows in the weight matrix.
65
+ N (int): Number of columns in the weight matrix.
66
+ BLOCK_SIZE (tl.constexpr): Size of the block for tiling.
67
+
68
+ Returns:
69
+ None
70
+ """
71
+ pid_m = tl.program_id(axis=0)
72
+ pid_n = tl.program_id(axis=1)
73
+ n = tl.cdiv(N, BLOCK_SIZE)
74
+ offs_m = pid_m * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
75
+ offs_n = pid_n * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
76
+ offs = offs_m[:, None] * N + offs_n[None, :]
77
+ mask = (offs_m[:, None] < M) & (offs_n[None, :] < N)
78
+ x = tl.load(x_ptr + offs, mask=mask).to(tl.float32)
79
+ s = tl.load(s_ptr + pid_m * n + pid_n)
80
+ y = x * s
81
+ tl.store(y_ptr + offs, y, mask=mask)
82
+
83
+
84
+ def weight_dequant(x: torch.Tensor, s: torch.Tensor, block_size: int = 128) -> torch.Tensor:
85
+ """
86
+ Dequantizes the given weight tensor using the provided scale tensor.
87
+
88
+ Args:
89
+ x (torch.Tensor): The quantized weight tensor of shape (M, N).
90
+ s (torch.Tensor): The scale tensor of shape (M, N).
91
+ block_size (int, optional): The block size to use for dequantization. Defaults to 128.
92
+
93
+ Returns:
94
+ torch.Tensor: The dequantized weight tensor of the same shape as `x`.
95
+
96
+ Raises:
97
+ AssertionError: If `x` or `s` are not contiguous or if their dimensions are not 2.
98
+ """
99
+ assert x.is_contiguous() and s.is_contiguous()
100
+ assert x.dim() == 2 and s.dim() == 2
101
+ M, N = x.size()
102
+ y = torch.empty_like(x, dtype=torch.get_default_dtype())
103
+ grid = lambda meta: (triton.cdiv(M, meta['BLOCK_SIZE']), triton.cdiv(N, meta['BLOCK_SIZE']))
104
+ weight_dequant_kernel[grid](x, s, y, M, N, BLOCK_SIZE=block_size)
105
+ return y
106
+
107
+
108
+ fp8_gemm_configs = [
109
+ Config({'BLOCK_SIZE_M': block_m, 'BLOCK_SIZE_N': block_n, 'BLOCK_SIZE_K': 128}, num_stages=num_stages, num_warps=8)
110
+ for block_m in [16, 32, 64] for block_n in [32, 64, 128] for num_stages in [3, 4, 5, 6]
111
+ ]
112
+
113
+ @triton.autotune(configs=fp8_gemm_configs, key=['N', 'K'])
114
+ @triton.jit
115
+ def fp8_gemm_kernel(a_ptr, b_ptr, c_ptr,
116
+ a_s_ptr, b_s_ptr,
117
+ M, N: tl.constexpr, K: tl.constexpr,
118
+ BLOCK_SIZE_M: tl.constexpr,
119
+ BLOCK_SIZE_N: tl.constexpr,
120
+ BLOCK_SIZE_K: tl.constexpr):
121
+ """
122
+ Performs a matrix multiplication operation on FP8 matrices with scaling factors.
123
+
124
+ Args:
125
+ a_ptr (tl.tensor): Pointer to the first input matrix A.
126
+ b_ptr (tl.tensor): Pointer to the second input matrix B.
127
+ c_ptr (tl.tensor): Pointer to the output matrix C.
128
+ a_s_ptr (tl.tensor): Pointer to the scaling factors for matrix A.
129
+ b_s_ptr (tl.tensor): Pointer to the scaling factors for matrix B.
130
+ M (int): Number of rows in matrix A and C.
131
+ N (tl.constexpr): Number of columns in matrix B and C.
132
+ K (tl.constexpr): Number of columns in matrix A and rows in matrix B.
133
+ BLOCK_SIZE_M (tl.constexpr): Block size for the M dimension.
134
+ BLOCK_SIZE_N (tl.constexpr): Block size for the N dimension.
135
+ BLOCK_SIZE_K (tl.constexpr): Block size for the K dimension.
136
+
137
+ Returns:
138
+ None
139
+ """
140
+ pid_m = tl.program_id(axis=0)
141
+ pid_n = tl.program_id(axis=1)
142
+ k = tl.cdiv(K, BLOCK_SIZE_K)
143
+ offs_m = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
144
+ offs_n = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
145
+ offs_k = tl.arange(0, BLOCK_SIZE_K)
146
+ a_ptrs = a_ptr + offs_m[:, None] * K + offs_k[None, :]
147
+ b_ptrs = b_ptr + offs_n[None, :] * K + offs_k[:, None]
148
+ a_s_ptrs = a_s_ptr + offs_m * k
149
+ b_s_ptrs = b_s_ptr + (offs_n // BLOCK_SIZE_K) * k
150
+
151
+ accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
152
+ for i in range(k):
153
+ a = tl.load(a_ptrs, mask=offs_k[None, :] < K - i * BLOCK_SIZE_K, other=0.0)
154
+ b = tl.load(b_ptrs, mask=offs_k[:, None] < K - i * BLOCK_SIZE_K, other=0.0)
155
+ a_s = tl.load(a_s_ptrs)
156
+ b_s = tl.load(b_s_ptrs)
157
+ accumulator += tl.dot(a, b) * a_s[:, None] * b_s[None, :]
158
+ a_ptrs += BLOCK_SIZE_K
159
+ b_ptrs += BLOCK_SIZE_K
160
+ a_s_ptrs += 1
161
+ b_s_ptrs += 1
162
+ c = accumulator.to(c_ptr.dtype.element_ty)
163
+ offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
164
+ offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
165
+ c_ptrs = c_ptr + offs_m[:, None] * N + offs_n[None, :]
166
+ mask = (offs_m[:, None] < M) & (offs_n[None, :] < N)
167
+ tl.store(c_ptrs, c, mask=mask)
168
+
169
+
170
+ def fp8_gemm(a: torch.Tensor, a_s: torch.Tensor, b: torch.Tensor, b_s: torch.Tensor):
171
+ """
172
+ Perform a matrix multiplication using FP8 precision.
173
+
174
+ Args:
175
+ a (torch.Tensor): The first input matrix, must be contiguous.
176
+ a_s (torch.Tensor): The scaling factor for the first input matrix, must be contiguous.
177
+ b (torch.Tensor): The second input matrix, must be contiguous.
178
+ b_s (torch.Tensor): The scaling factor for the second input matrix, must be contiguous.
179
+
180
+ Returns:
181
+ torch.Tensor: The result of the matrix multiplication.
182
+ """
183
+ assert a.is_contiguous() and b.is_contiguous()
184
+ assert a_s.is_contiguous() and b_s.is_contiguous()
185
+ K = a.size(-1)
186
+ M = a.numel() // K
187
+ N = b.size(0)
188
+ c = a.new_empty(*a.size()[:-1], N, dtype=torch.get_default_dtype())
189
+ grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']), triton.cdiv(N, META['BLOCK_SIZE_N']))
190
+ fp8_gemm_kernel[grid](a, b, c, a_s, b_s, M, N, K)
191
+ return c
model.py ADDED
@@ -0,0 +1,804 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from dataclasses import dataclass
3
+ from typing import Tuple, Optional, Literal
4
+
5
+ import torch
6
+ from torch import nn
7
+ import torch.nn.functional as F
8
+ import torch.distributed as dist
9
+
10
+ from kernel import act_quant, weight_dequant, fp8_gemm
11
+
12
+
13
+ world_size = 1
14
+ rank = 0
15
+ block_size = 128
16
+ gemm_impl: Literal["bf16", "fp8"] = "bf16"
17
+ attn_impl: Literal["naive", "absorb"] = "absorb"
18
+
19
+ @dataclass
20
+ class ModelArgs:
21
+ """
22
+ Data class for defining model arguments and hyperparameters.
23
+
24
+ Attributes:
25
+ max_batch_size (int): Maximum batch size.
26
+ max_seq_len (int): Maximum sequence length.
27
+ dtype (Literal["bf16", "fp8"]): Data type for computations.
28
+ vocab_size (int): Vocabulary size.
29
+ dim (int): Model dimension.
30
+ inter_dim (int): Intermediate dimension for MLP layers.
31
+ moe_inter_dim (int): Intermediate dimension for MoE layers.
32
+ n_layers (int): Number of transformer layers.
33
+ n_dense_layers (int): Number of dense layers in the model.
34
+ n_heads (int): Number of attention heads.
35
+ n_routed_experts (int): Number of routed experts for MoE layers.
36
+ n_shared_experts (int): Number of shared experts for MoE layers.
37
+ n_activated_experts (int): Number of activated experts in MoE layers.
38
+ n_expert_groups (int): Number of expert groups.
39
+ n_limited_groups (int): Number of limited groups for MoE routing.
40
+ score_func (Literal["softmax", "sigmoid"]): Scoring function for MoE routing.
41
+ route_scale (float): Scaling factor for routing scores.
42
+ q_lora_rank (int): LoRA rank for query projections.
43
+ kv_lora_rank (int): LoRA rank for key-value projections.
44
+ qk_nope_head_dim (int): Dimension for query-key projections without positional embeddings.
45
+ qk_rope_head_dim (int): Dimension for query-key projections with rotary embeddings.
46
+ v_head_dim (int): Dimension for value projections.
47
+ original_seq_len (int): Original sequence length.
48
+ rope_theta (float): Base for rotary positional encoding.
49
+ rope_factor (float): Scaling factor for extended sequence lengths.
50
+ beta_fast (int): Fast beta correction factor.
51
+ beta_slow (int): Slow beta correction factor.
52
+ mscale (float): Scaling factor for extended attention.
53
+ """
54
+ max_batch_size: int = 8
55
+ max_seq_len: int = 4096 * 4
56
+ dtype: Literal["bf16", "fp8"] = "bf16"
57
+ vocab_size: int = 102400
58
+ dim: int = 2048
59
+ inter_dim: int = 10944
60
+ moe_inter_dim: int = 1408
61
+ n_layers: int = 27
62
+ n_dense_layers: int = 1
63
+ n_heads: int = 16
64
+ # moe
65
+ n_routed_experts: int = 64
66
+ n_shared_experts: int = 2
67
+ n_activated_experts: int = 6
68
+ n_expert_groups: int = 1
69
+ n_limited_groups: int = 1
70
+ score_func: Literal["softmax", "sigmoid"] = "softmax"
71
+ route_scale: float = 1.
72
+ # mla
73
+ q_lora_rank: int = 0
74
+ kv_lora_rank: int = 512
75
+ qk_nope_head_dim: int = 128
76
+ qk_rope_head_dim: int = 64
77
+ v_head_dim: int = 128
78
+ # yarn
79
+ original_seq_len: int = 4096
80
+ rope_theta: float = 10000.0
81
+ rope_factor: float = 40
82
+ beta_fast: int = 32
83
+ beta_slow: int = 1
84
+ mscale: float = 1.
85
+
86
+
87
+ class ParallelEmbedding(nn.Module):
88
+ """
89
+ Embedding layer with parallelism support across distributed processes.
90
+
91
+ Args:
92
+ vocab_size (int): Vocabulary size.
93
+ dim (int): Embedding dimension.
94
+ """
95
+ def __init__(self, vocab_size: int, dim: int):
96
+ super().__init__()
97
+ self.vocab_size = vocab_size
98
+ self.dim = dim
99
+ assert vocab_size % world_size == 0
100
+ self.part_vocab_size = (vocab_size // world_size)
101
+ self.vocab_start_idx = rank * self.part_vocab_size
102
+ self.vocab_end_idx = self.vocab_start_idx + self.part_vocab_size
103
+ self.weight = nn.Parameter(torch.empty(self.part_vocab_size, self.dim))
104
+
105
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
106
+ """
107
+ Forward pass for parallel embedding layer.
108
+
109
+ Args:
110
+ x (torch.Tensor): Input tensor containing token indices.
111
+
112
+ Returns:
113
+ torch.Tensor: Embedded representations.
114
+
115
+ Raises:
116
+ ValueError: If `world_size` is not defined.
117
+ """
118
+ if world_size > 1:
119
+ mask = (x < self.vocab_start_idx) | (x >= self.vocab_end_idx)
120
+ x = x - self.vocab_start_idx
121
+ x[mask] = 0
122
+ y = F.embedding(x, self.weight)
123
+ if world_size > 1:
124
+ y[mask] = 0
125
+ dist.all_reduce(y)
126
+ return y
127
+
128
+
129
+ def linear(x: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None) -> torch.Tensor:
130
+ """
131
+ Applies a linear transformation to the incoming data: y = xA^T + b.
132
+ This function supports specialized implementations based on quantization
133
+ and tensor formats.
134
+
135
+ Args:
136
+ x (torch.Tensor): The input tensor.
137
+ weight (torch.Tensor): The weight tensor. It may be quantized and
138
+ requires dequantization for certain cases.
139
+ bias (Optional[torch.Tensor]): The bias tensor to be added. Default is None.
140
+
141
+ Returns:
142
+ torch.Tensor: The result of the linear transformation, which may involve
143
+ quantization-aware computations depending on the input parameters.
144
+
145
+ Notes:
146
+ - If `weight` is quantized (e.g., `element_size() > 1`), a dequantized version
147
+ is used for computation.
148
+ - If `gemm_impl == "bf16"`, dequantization and a `bf16` GEMM operation are applied.
149
+ - For other cases, the function applies quantization to `x` and uses `fp8_gemm` for computation.
150
+ """
151
+ if weight.element_size() > 1:
152
+ return F.linear(x, weight, bias)
153
+ elif gemm_impl == "bf16":
154
+ weight = weight_dequant(weight, weight.scale)
155
+ return F.linear(x, weight, bias)
156
+ else:
157
+ x, scale = act_quant(x, block_size)
158
+ y = fp8_gemm(x, scale, weight, weight.scale)
159
+ if bias is not None:
160
+ y += bias
161
+ return y
162
+
163
+
164
+ class Linear(nn.Module):
165
+ """
166
+ Custom linear layer with support for quantized weights and optional bias.
167
+
168
+ Args:
169
+ in_features (int): Number of input features.
170
+ out_features (int): Number of output features.
171
+ bias (bool): Whether to include a bias term. Defaults to False.
172
+ dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
173
+ """
174
+ dtype = torch.bfloat16
175
+
176
+ def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
177
+ super().__init__()
178
+ self.in_features = in_features
179
+ self.out_features = out_features
180
+ self.weight = nn.Parameter(torch.empty(out_features, in_features, dtype=dtype or Linear.dtype))
181
+ if self.weight.element_size() == 1:
182
+ scale_out_features = (out_features + block_size - 1) // block_size
183
+ scale_in_features = (in_features + block_size - 1) // block_size
184
+ self.weight.scale = self.scale = nn.Parameter(torch.empty(scale_out_features, scale_in_features, dtype=torch.float32))
185
+ else:
186
+ self.register_parameter("scale", None)
187
+ if bias:
188
+ self.bias = nn.Parameter(torch.empty(self.part_out_features))
189
+ else:
190
+ self.register_parameter("bias", None)
191
+
192
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
193
+ """
194
+ Forward pass for the custom linear layer.
195
+
196
+ Args:
197
+ x (torch.Tensor): Input tensor.
198
+
199
+ Returns:
200
+ torch.Tensor: Transformed tensor after linear computation.
201
+ """
202
+ return linear(x, self.weight, self.bias)
203
+
204
+
205
+ class ColumnParallelLinear(Linear):
206
+ """
207
+ Linear layer with column parallelism, splitting output features across distributed processes.
208
+
209
+ Args:
210
+ in_features (int): Number of input features.
211
+ out_features (int): Total number of output features.
212
+ bias (bool): Whether to include a bias term. Defaults to False.
213
+ dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
214
+ """
215
+ def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
216
+ assert out_features % world_size == 0
217
+ self.part_out_features = out_features // world_size
218
+ super().__init__(in_features, self.part_out_features, bias, dtype)
219
+
220
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
221
+ """
222
+ Forward pass for column parallel linear layer.
223
+
224
+ Args:
225
+ x (torch.Tensor): Input tensor.
226
+
227
+ Returns:
228
+ torch.Tensor: Transformed tensor with column-parallel computation.
229
+ """
230
+ y = linear(x, self.weight, self.bias)
231
+ return y
232
+
233
+
234
+ class RowParallelLinear(Linear):
235
+ """
236
+ Linear layer with row parallelism, splitting input features across distributed processes.
237
+
238
+ Args:
239
+ in_features (int): Total number of input features.
240
+ out_features (int): Number of output features.
241
+ bias (bool): Whether to include a bias term. Defaults to False.
242
+ dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
243
+ """
244
+ def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
245
+ assert in_features % world_size == 0
246
+ self.part_in_features = in_features // world_size
247
+ super().__init__(self.part_in_features, out_features, bias, dtype)
248
+
249
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
250
+ """
251
+ Forward pass for row parallel linear layer.
252
+
253
+ Args:
254
+ x (torch.Tensor): Input tensor.
255
+
256
+ Returns:
257
+ torch.Tensor: Transformed tensor with row-parallel computation.
258
+ """
259
+ y = linear(x, self.weight)
260
+ if world_size > 1:
261
+ dist.all_reduce(y)
262
+ if self.bias is not None:
263
+ y += self.bias
264
+ return y
265
+
266
+
267
+ class RMSNorm(nn.Module):
268
+ """
269
+ Root Mean Square Layer Normalization (RMSNorm).
270
+
271
+ Args:
272
+ dim (int): Dimension of the input tensor.
273
+ eps (float): Epsilon value for numerical stability. Defaults to 1e-6.
274
+ """
275
+ def __init__(self, dim: int, eps: float = 1e-6):
276
+ super().__init__()
277
+ self.dim = dim
278
+ self.eps = eps
279
+ self.weight = nn.Parameter(torch.ones(dim))
280
+
281
+ def forward(self, x: torch.Tensor):
282
+ """
283
+ Forward pass for RMSNorm.
284
+
285
+ Args:
286
+ x (torch.Tensor): Input tensor.
287
+
288
+ Returns:
289
+ torch.Tensor: Normalized tensor with the same shape as input.
290
+ """
291
+ return F.rms_norm(x, (self.dim,), self.weight, self.eps)
292
+
293
+
294
+ def precompute_freqs_cis(args: ModelArgs) -> torch.Tensor:
295
+ """
296
+ Precomputes frequency-based complex exponential values for rotary positional embeddings.
297
+
298
+ Args:
299
+ args (ModelArgs): Model arguments containing positional embedding parameters.
300
+
301
+ Returns:
302
+ torch.Tensor: Precomputed complex exponential values for positional embeddings.
303
+ """
304
+ dim = args.qk_rope_head_dim
305
+ seqlen = args.max_seq_len
306
+ beta_fast = args.beta_fast
307
+ beta_slow = args.beta_slow
308
+ base = args.rope_theta
309
+ factor = args.rope_factor
310
+
311
+ def find_correction_dim(num_rotations, dim, base, max_seq_len):
312
+ """
313
+ Computes the correction dimension for a given number of rotations in the rotary positional embedding.
314
+
315
+ Args:
316
+ num_rotations (float): Number of rotations to compute the correction for.
317
+ dim (int): Dimensionality of the embedding space.
318
+ base (float): Base value for the exponential computation.
319
+ max_seq_len (int): Maximum sequence length.
320
+
321
+ Returns:
322
+ float: The correction dimension based on the input parameters.
323
+ """
324
+ return dim * math.log(max_seq_len / (num_rotations * 2 * math.pi)) / (2 * math.log(base))
325
+
326
+ def find_correction_range(low_rot, high_rot, dim, base, max_seq_len):
327
+ """
328
+ Computes the range of correction dimensions for rotary positional embeddings.
329
+
330
+ Args:
331
+ low_rot (float): Lower bound for the number of rotations.
332
+ high_rot (float): Upper bound for the number of rotations.
333
+ dim (int): Dimensionality of the embedding space.
334
+ base (float): Base value for the exponential computation.
335
+ max_seq_len (int): Maximum sequence length.
336
+
337
+ Returns:
338
+ Tuple[int, int]: The range of correction dimensions (low, high), clamped to valid indices.
339
+ """
340
+ low = math.floor(find_correction_dim(low_rot, dim, base, max_seq_len))
341
+ high = math.ceil(find_correction_dim(high_rot, dim, base, max_seq_len))
342
+ return max(low, 0), min(high, dim-1)
343
+
344
+ def linear_ramp_factor(min, max, dim):
345
+ """
346
+ Computes a linear ramp function used to smooth values between a minimum and maximum range.
347
+
348
+ Args:
349
+ min (float): Minimum value for the ramp function.
350
+ max (float): Maximum value for the ramp function.
351
+ dim (int): Dimensionality of the ramp tensor.
352
+
353
+ Returns:
354
+ torch.Tensor: A tensor of shape (dim,) with values linearly interpolated between 0 and 1,
355
+ clamped to the range [0, 1].
356
+ """
357
+ if min == max:
358
+ max += 0.001
359
+ linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
360
+ ramp_func = torch.clamp(linear_func, 0, 1)
361
+ return ramp_func
362
+
363
+ freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
364
+ if seqlen > args.original_seq_len:
365
+ low, high = find_correction_range(beta_fast, beta_slow, dim, base, args.original_seq_len)
366
+ smooth = 1 - linear_ramp_factor(low, high, dim // 2)
367
+ freqs = freqs / factor * (1 - smooth) + freqs * smooth
368
+
369
+ t = torch.arange(seqlen)
370
+ freqs = torch.outer(t, freqs)
371
+ freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
372
+ return freqs_cis
373
+
374
+
375
+ def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
376
+ """
377
+ Applies rotary positional embeddings to the input tensor.
378
+
379
+ Args:
380
+ x (torch.Tensor): Input tensor with positional embeddings to be applied.
381
+ freqs_cis (torch.Tensor): Precomputed complex exponential values for positional embeddings.
382
+
383
+ Returns:
384
+ torch.Tensor: Tensor with rotary embeddings applied.
385
+ """
386
+ dtype = x.dtype
387
+ x = torch.view_as_complex(x.float().view(*x.shape[:-1], -1, 2))
388
+ freqs_cis = freqs_cis.view(1, x.size(1), 1, x.size(-1))
389
+ y = torch.view_as_real(x * freqs_cis).flatten(3)
390
+ return y.to(dtype)
391
+
392
+
393
+ class MLA(nn.Module):
394
+ """
395
+ Multi-Headed Attention Layer (MLA).
396
+
397
+ Attributes:
398
+ dim (int): Dimensionality of the input features.
399
+ n_heads (int): Number of attention heads.
400
+ n_local_heads (int): Number of local attention heads for distributed systems.
401
+ q_lora_rank (int): Rank for low-rank query projection.
402
+ kv_lora_rank (int): Rank for low-rank key/value projection.
403
+ qk_nope_head_dim (int): Dimensionality of non-positional query/key projections.
404
+ qk_rope_head_dim (int): Dimensionality of rotary-positional query/key projections.
405
+ qk_head_dim (int): Total dimensionality of query/key projections.
406
+ v_head_dim (int): Dimensionality of value projections.
407
+ softmax_scale (float): Scaling factor for softmax in attention computation.
408
+ """
409
+ def __init__(self, args: ModelArgs):
410
+ super().__init__()
411
+ self.dim = args.dim
412
+ self.n_heads = args.n_heads
413
+ self.n_local_heads = args.n_heads // world_size
414
+ self.q_lora_rank = args.q_lora_rank
415
+ self.kv_lora_rank = args.kv_lora_rank
416
+ self.qk_nope_head_dim = args.qk_nope_head_dim
417
+ self.qk_rope_head_dim = args.qk_rope_head_dim
418
+ self.qk_head_dim = args.qk_nope_head_dim + args.qk_rope_head_dim
419
+ self.v_head_dim = args.v_head_dim
420
+
421
+ if self.q_lora_rank == 0:
422
+ self.wq = ColumnParallelLinear(self.dim, self.n_heads * self.qk_head_dim)
423
+ else:
424
+ self.wq_a = Linear(self.dim, self.q_lora_rank)
425
+ self.q_norm = RMSNorm(self.q_lora_rank)
426
+ self.wq_b = ColumnParallelLinear(self.q_lora_rank, self.n_heads * self.qk_head_dim)
427
+ self.wkv_a = Linear(self.dim, self.kv_lora_rank + self.qk_rope_head_dim)
428
+ self.kv_norm = RMSNorm(self.kv_lora_rank)
429
+ self.wkv_b = ColumnParallelLinear(self.kv_lora_rank, self.n_heads * (self.qk_nope_head_dim + self.v_head_dim))
430
+ self.wo = RowParallelLinear(self.n_heads * self.v_head_dim, self.dim)
431
+ self.softmax_scale = self.qk_head_dim ** -0.5
432
+ if args.max_seq_len > args.original_seq_len:
433
+ mscale = 0.1 * args.mscale * math.log(args.rope_factor) + 1.0
434
+ self.softmax_scale = self.softmax_scale * mscale * mscale
435
+
436
+ if attn_impl == "naive":
437
+ self.register_buffer("k_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.qk_head_dim), persistent=False)
438
+ self.register_buffer("v_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.v_head_dim), persistent=False)
439
+ else:
440
+ self.register_buffer("kv_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.kv_lora_rank), persistent=False)
441
+ self.register_buffer("pe_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.qk_rope_head_dim), persistent=False)
442
+
443
+ def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]):
444
+ """
445
+ Forward pass for the Multi-Headed Attention Layer (MLA).
446
+
447
+ Args:
448
+ x (torch.Tensor): Input tensor of shape (batch_size, seq_len, dim).
449
+ start_pos (int): Starting position in the sequence for caching.
450
+ freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
451
+ mask (Optional[torch.Tensor]): Mask tensor to exclude certain positions from attention.
452
+
453
+ Returns:
454
+ torch.Tensor: Output tensor with the same shape as the input.
455
+ """
456
+ bsz, seqlen, _ = x.size()
457
+ end_pos = start_pos + seqlen
458
+ if self.q_lora_rank == 0:
459
+ q = self.wq(x)
460
+ else:
461
+ q = self.wq_b(self.q_norm(self.wq_a(x)))
462
+ q = q.view(bsz, seqlen, self.n_local_heads, self.qk_head_dim)
463
+ q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
464
+ q_pe = apply_rotary_emb(q_pe, freqs_cis)
465
+ kv = self.wkv_a(x)
466
+ kv, k_pe = torch.split(kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
467
+ k_pe = apply_rotary_emb(k_pe.unsqueeze(2), freqs_cis)
468
+ if attn_impl == "naive":
469
+ q = torch.cat([q_nope, q_pe], dim=-1)
470
+ kv = self.wkv_b(self.kv_norm(kv))
471
+ kv = kv.view(bsz, seqlen, self.n_local_heads, self.qk_nope_head_dim + self.v_head_dim)
472
+ k_nope, v = torch.split(kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)
473
+ k = torch.cat([k_nope, k_pe.expand(-1, -1, self.n_local_heads, -1)], dim=-1)
474
+ self.k_cache[:bsz, start_pos:end_pos] = k
475
+ self.v_cache[:bsz, start_pos:end_pos] = v
476
+ scores = torch.einsum("bshd,bthd->bsht", q, self.k_cache[:bsz, :end_pos]) * self.softmax_scale
477
+ else:
478
+ wkv_b = self.wkv_b.weight if self.wkv_b.scale is None else weight_dequant(self.wkv_b.weight, self.wkv_b.scale, block_size)
479
+ wkv_b = wkv_b.view(self.n_local_heads, -1, self.kv_lora_rank)
480
+ q_nope = torch.einsum("bshd,hdc->bshc", q_nope, wkv_b[:, :self.qk_nope_head_dim])
481
+ self.kv_cache[:bsz, start_pos:end_pos] = self.kv_norm(kv)
482
+ self.pe_cache[:bsz, start_pos:end_pos] = k_pe.squeeze(2)
483
+ scores = (torch.einsum("bshc,btc->bsht", q_nope, self.kv_cache[:bsz, :end_pos]) +
484
+ torch.einsum("bshr,btr->bsht", q_pe, self.pe_cache[:bsz, :end_pos])) * self.softmax_scale
485
+ if mask is not None:
486
+ scores += mask.unsqueeze(1)
487
+ scores = scores.softmax(dim=-1, dtype=torch.float32).type_as(x)
488
+ if attn_impl == "naive":
489
+ x = torch.einsum("bsht,bthd->bshd", scores, self.v_cache[:bsz, :end_pos])
490
+ else:
491
+ x = torch.einsum("bsht,btc->bshc", scores, self.kv_cache[:bsz, :end_pos])
492
+ x = torch.einsum("bshc,hdc->bshd", x, wkv_b[:, -self.v_head_dim:])
493
+ x = self.wo(x.flatten(2))
494
+ return x
495
+
496
+
497
+ class MLP(nn.Module):
498
+ """
499
+ Multi-Layer Perceptron (MLP) used as a feed-forward layer.
500
+
501
+ Attributes:
502
+ w1 (nn.Module): Linear layer for input-to-hidden transformation.
503
+ w2 (nn.Module): Linear layer for hidden-to-output transformation.
504
+ w3 (nn.Module): Additional linear layer for feature transformation.
505
+ """
506
+ def __init__(self, dim: int, inter_dim: int):
507
+ """
508
+ Initializes the MLP layer.
509
+
510
+ Args:
511
+ dim (int): Input and output dimensionality.
512
+ inter_dim (int): Hidden layer dimensionality.
513
+ """
514
+ super().__init__()
515
+ self.w1 = ColumnParallelLinear(dim, inter_dim)
516
+ self.w2 = RowParallelLinear(inter_dim, dim)
517
+ self.w3 = ColumnParallelLinear(dim, inter_dim)
518
+
519
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
520
+ """
521
+ Forward pass for the MLP layer.
522
+
523
+ Args:
524
+ x (torch.Tensor): Input tensor.
525
+
526
+ Returns:
527
+ torch.Tensor: Output tensor after MLP computation.
528
+ """
529
+ return self.w2(F.silu(self.w1(x)) * self.w3(x))
530
+
531
+
532
+ class Gate(nn.Module):
533
+ """
534
+ Gating mechanism for routing inputs in a mixture-of-experts (MoE) model.
535
+
536
+ Attributes:
537
+ dim (int): Dimensionality of input features.
538
+ topk (int): Number of top experts activated for each input.
539
+ n_groups (int): Number of groups for routing.
540
+ topk_groups (int): Number of groups to route inputs to.
541
+ score_func (str): Scoring function ('softmax' or 'sigmoid').
542
+ route_scale (float): Scaling factor for routing weights.
543
+ weight (torch.nn.Parameter): Learnable weights for the gate.
544
+ bias (Optional[torch.nn.Parameter]): Optional bias term for the gate.
545
+ """
546
+ def __init__(self, args: ModelArgs):
547
+ """
548
+ Initializes the Gate module.
549
+
550
+ Args:
551
+ args (ModelArgs): Model arguments containing gating parameters.
552
+ """
553
+ super().__init__()
554
+ self.dim = args.dim
555
+ self.topk = args.n_activated_experts
556
+ self.n_groups = args.n_expert_groups
557
+ self.topk_groups = args.n_limited_groups
558
+ self.score_func = args.score_func
559
+ self.route_scale = args.route_scale
560
+ self.weight = nn.Parameter(torch.empty(args.n_routed_experts, args.dim))
561
+ self.bias = nn.Parameter(torch.empty(args.n_routed_experts)) if self.dim == 7168 else None
562
+
563
+ def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
564
+ """
565
+ Forward pass for the gating mechanism.
566
+
567
+ Args:
568
+ x (torch.Tensor): Input tensor.
569
+
570
+ Returns:
571
+ Tuple[torch.Tensor, torch.Tensor]: Routing weights and selected expert indices.
572
+ """
573
+ scores = linear(x, self.weight)
574
+ if self.score_func == "softmax":
575
+ scores = scores.softmax(dim=-1, dtype=torch.float32)
576
+ else:
577
+ scores = scores.sigmoid()
578
+ original_scores = scores
579
+ if self.bias is not None:
580
+ scores = scores + self.bias
581
+ if self.n_groups > 1:
582
+ scores = scores.view(x.size(0), self.n_groups, -1)
583
+ if self.bias is None:
584
+ group_scores = scores.amax(dim=-1)
585
+ else:
586
+ group_scores = scores.topk(2, dim=-1)[0].sum(dim=-1)
587
+ indices = group_scores.topk(self.topk_groups, dim=-1)[1]
588
+ mask = torch.zeros_like(scores[..., 0]).scatter_(1, indices, True)
589
+ scores = (scores * mask.unsqueeze(-1)).flatten(1)
590
+ indices = torch.topk(scores, self.topk, dim=-1)[1]
591
+ weights = original_scores.gather(1, indices)
592
+ if self.score_func == "sigmoid":
593
+ weights /= weights.sum(dim=-1, keepdim=True)
594
+ weights *= self.route_scale
595
+ return weights.type_as(x), indices
596
+
597
+
598
+ class Expert(nn.Module):
599
+ """
600
+ Expert layer for Mixture-of-Experts (MoE) models.
601
+
602
+ Attributes:
603
+ w1 (nn.Module): Linear layer for input-to-hidden transformation.
604
+ w2 (nn.Module): Linear layer for hidden-to-output transformation.
605
+ w3 (nn.Module): Additional linear layer for feature transformation.
606
+ """
607
+ def __init__(self, dim: int, inter_dim: int):
608
+ """
609
+ Initializes the Expert layer.
610
+
611
+ Args:
612
+ dim (int): Input and output dimensionality.
613
+ inter_dim (int): Hidden layer dimensionality.
614
+ """
615
+ super().__init__()
616
+ self.w1 = Linear(dim, inter_dim)
617
+ self.w2 = Linear(inter_dim, dim)
618
+ self.w3 = Linear(dim, inter_dim)
619
+
620
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
621
+ """
622
+ Forward pass for the Expert layer.
623
+
624
+ Args:
625
+ x (torch.Tensor): Input tensor.
626
+
627
+ Returns:
628
+ torch.Tensor: Output tensor after expert computation.
629
+ """
630
+ return self.w2(F.silu(self.w1(x)) * self.w3(x))
631
+
632
+
633
+ class MoE(nn.Module):
634
+ """
635
+ Mixture-of-Experts (MoE) module.
636
+
637
+ Attributes:
638
+ dim (int): Dimensionality of input features.
639
+ n_routed_experts (int): Total number of experts in the model.
640
+ n_local_experts (int): Number of experts handled locally in distributed systems.
641
+ n_activated_experts (int): Number of experts activated for each input.
642
+ gate (nn.Module): Gating mechanism to route inputs to experts.
643
+ experts (nn.ModuleList): List of expert modules.
644
+ shared_experts (nn.Module): Shared experts applied to all inputs.
645
+ """
646
+ def __init__(self, args: ModelArgs):
647
+ """
648
+ Initializes the MoE module.
649
+
650
+ Args:
651
+ args (ModelArgs): Model arguments containing MoE parameters.
652
+ """
653
+ super().__init__()
654
+ self.dim = args.dim
655
+ assert args.n_routed_experts % world_size == 0
656
+ self.n_routed_experts = args.n_routed_experts
657
+ self.n_local_experts = args.n_routed_experts // world_size
658
+ self.n_activated_experts = args.n_activated_experts
659
+ self.experts_start_idx = rank * self.n_local_experts
660
+ self.experts_end_idx = self.experts_start_idx + self.n_local_experts
661
+ self.gate = Gate(args)
662
+ self.experts = nn.ModuleList([Expert(args.dim, args.moe_inter_dim) if self.experts_start_idx <= i < self.experts_end_idx else None
663
+ for i in range(self.n_routed_experts)])
664
+ self.shared_experts = MLP(args.dim, args.n_shared_experts * args.moe_inter_dim)
665
+
666
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
667
+ """
668
+ Forward pass for the MoE module.
669
+
670
+ Args:
671
+ x (torch.Tensor): Input tensor.
672
+
673
+ Returns:
674
+ torch.Tensor: Output tensor after expert routing and computation.
675
+ """
676
+ shape = x.size()
677
+ x = x.view(-1, self.dim)
678
+ weights, indices = self.gate(x)
679
+ y = torch.zeros_like(x)
680
+ counts = torch.bincount(indices.flatten(), minlength=self.n_routed_experts).tolist()
681
+ for i in range(self.experts_start_idx, self.experts_end_idx):
682
+ if counts[i] == 0:
683
+ continue
684
+ expert = self.experts[i]
685
+ idx, top = torch.where(indices == i)
686
+ y[idx] += expert(x[idx]) * weights[idx, top, None]
687
+ z = self.shared_experts(x)
688
+ if world_size > 1:
689
+ dist.all_reduce(y)
690
+ return (y + z).view(shape)
691
+
692
+
693
+ class Block(nn.Module):
694
+ """
695
+ Transformer block combining attention and feed-forward layers.
696
+
697
+ Attributes:
698
+ attn (nn.Module): Attention layer (MLA).
699
+ ffn (nn.Module): Feed-forward network (MLP or MoE).
700
+ attn_norm (nn.Module): Layer normalization for attention.
701
+ ffn_norm (nn.Module): Layer normalization for feed-forward network.
702
+ """
703
+ def __init__(self, layer_id: int, args: ModelArgs):
704
+ """
705
+ Initializes the Transformer block.
706
+
707
+ Args:
708
+ layer_id (int): Layer index in the transformer.
709
+ args (ModelArgs): Model arguments containing block parameters.
710
+ """
711
+ super().__init__()
712
+ self.attn = MLA(args)
713
+ self.ffn = MLP(args.dim, args.inter_dim) if layer_id < args.n_dense_layers else MoE(args)
714
+ self.attn_norm = RMSNorm(args.dim)
715
+ self.ffn_norm = RMSNorm(args.dim)
716
+
717
+ def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]) -> torch.Tensor:
718
+ """
719
+ Forward pass for the Transformer block.
720
+
721
+ Args:
722
+ x (torch.Tensor): Input tensor.
723
+ start_pos (int): Starting position in the sequence.
724
+ freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
725
+ mask (Optional[torch.Tensor]): Mask tensor to exclude certain positions from attention.
726
+
727
+ Returns:
728
+ torch.Tensor: Output tensor after block computation.
729
+ """
730
+ x = x + self.attn(self.attn_norm(x), start_pos, freqs_cis, mask)
731
+ x = x + self.ffn(self.ffn_norm(x))
732
+ return x
733
+
734
+
735
+ class Transformer(nn.Module):
736
+ """
737
+ Transformer model with positional embeddings, multiple layers, and output projection.
738
+
739
+ Attributes:
740
+ max_seq_len (int): Maximum sequence length for the transformer.
741
+ embed (nn.Module): Embedding layer for input tokens.
742
+ layers (torch.nn.ModuleList): List of transformer blocks.
743
+ norm (nn.Module): Layer normalization applied after all blocks.
744
+ head (nn.Module): Output projection layer mapping to vocabulary size.
745
+ freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
746
+ """
747
+ def __init__(self, args: ModelArgs):
748
+ """
749
+ Initializes the Transformer model.
750
+
751
+ Args:
752
+ args (ModelArgs): Model arguments containing transformer parameters.
753
+ """
754
+ global world_size, rank
755
+ world_size = dist.get_world_size() if dist.is_initialized() else 1
756
+ rank = dist.get_rank() if dist.is_initialized() else 0
757
+ Linear.dtype = torch.float8_e4m3fn if args.dtype == "fp8" else torch.bfloat16
758
+ super().__init__()
759
+ self.max_seq_len = args.max_seq_len
760
+ self.embed = ParallelEmbedding(args.vocab_size, args.dim)
761
+ self.layers = torch.nn.ModuleList()
762
+ for layer_id in range(args.n_layers):
763
+ self.layers.append(Block(layer_id, args))
764
+ self.norm = RMSNorm(args.dim)
765
+ self.head = ColumnParallelLinear(args.dim, args.vocab_size, dtype=torch.get_default_dtype())
766
+ self.register_buffer("freqs_cis", precompute_freqs_cis(args), persistent=False)
767
+
768
+ @torch.inference_mode()
769
+ def forward(self, tokens: torch.Tensor, start_pos: int = 0):
770
+ """
771
+ Forward pass for the Transformer model.
772
+
773
+ Args:
774
+ tokens (torch.Tensor): Input tensor of token IDs with shape (batch_size, seq_len).
775
+ start_pos (int, optional): Starting position in the sequence for rotary embeddings. Defaults to 0.
776
+
777
+ Returns:
778
+ torch.Tensor: Logits tensor of shape (batch_size, vocab_size).
779
+ """
780
+ seqlen = tokens.size(1)
781
+ h = self.embed(tokens)
782
+ freqs_cis = self.freqs_cis[start_pos:start_pos+seqlen]
783
+ mask = None
784
+ if seqlen > 1:
785
+ mask = torch.full((seqlen, seqlen), float("-inf"), device=tokens.device).triu_(1)
786
+ for layer in self.layers:
787
+ h = layer(h, start_pos, freqs_cis, mask)
788
+ h = self.norm(h)[:, -1]
789
+ logits = self.head(h)
790
+ if world_size > 1:
791
+ all_logits = [torch.empty_like(logits) for _ in range(world_size)]
792
+ dist.all_gather(all_logits, logits)
793
+ logits = torch.cat(all_logits, dim=-1)
794
+ return logits
795
+
796
+
797
+ if __name__ == "__main__":
798
+ torch.set_default_dtype(torch.bfloat16)
799
+ torch.set_default_device("cuda")
800
+ torch.manual_seed(0)
801
+ args = ModelArgs()
802
+ x = torch.randint(0, args.vocab_size, (2, 128))
803
+ model = Transformer(args)
804
+ print(model(x).size())
requirements.txt CHANGED
@@ -1 +1,5 @@
1
- huggingface_hub==0.25.2
 
 
 
 
 
1
+ torch==2.4.1
2
+ triton==3.0.0
3
+ transformers==4.46.3
4
+ safetensors==0.4.5
5
+ huggingface_hub==0.25.2