|
from typing import Tuple |
|
|
|
import torch |
|
import triton |
|
import triton.language as tl |
|
from triton import Config |
|
|
|
|
|
@triton.jit |
|
def act_quant_kernel(x_ptr, y_ptr, s_ptr, BLOCK_SIZE: tl.constexpr): |
|
""" |
|
Quantizes the input tensor `x_ptr` and stores the result in `y_ptr` and the scaling factor in `s_ptr`. |
|
|
|
Args: |
|
x_ptr (triton.Pointer): Pointer to the input tensor. |
|
y_ptr (triton.Pointer): Pointer to the output tensor where quantized values will be stored. |
|
s_ptr (triton.Pointer): Pointer to the output tensor where scaling factors will be stored. |
|
BLOCK_SIZE (tl.constexpr): The size of the block to be processed by each program instance. |
|
|
|
Returns: |
|
None |
|
""" |
|
pid = tl.program_id(axis=0) |
|
offs = pid * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) |
|
x = tl.load(x_ptr + offs).to(tl.float32) |
|
s = tl.max(tl.abs(x)) / 448. |
|
y = x / s |
|
y = y.to(y_ptr.dtype.element_ty) |
|
tl.store(y_ptr + offs, y) |
|
tl.store(s_ptr + pid, s) |
|
|
|
|
|
def act_quant(x: torch.Tensor, block_size: int = 128) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Quantizes the input tensor `x` using block-wise quantization. |
|
|
|
Args: |
|
x (torch.Tensor): The input tensor to be quantized. Must be contiguous and its last dimension size must be divisible by `block_size`. |
|
block_size (int, optional): The size of the blocks to be used for quantization. Default is 128. |
|
|
|
Returns: |
|
Tuple[torch.Tensor, torch.Tensor]: A tuple containing: |
|
- The quantized tensor with dtype `torch.float8_e4m3fn`. |
|
- A tensor of scaling factors with dtype `torch.float32`. |
|
""" |
|
assert x.is_contiguous() |
|
assert x.size(-1) % block_size == 0 |
|
y = torch.empty_like(x, dtype=torch.float8_e4m3fn) |
|
s = x.new_empty(*x.size()[:-1], x.size(-1) // block_size, dtype=torch.float32) |
|
grid = lambda meta: (triton.cdiv(x.numel(), meta['BLOCK_SIZE']), ) |
|
act_quant_kernel[grid](x, y, s, BLOCK_SIZE=block_size) |
|
return y, s |
|
|
|
|
|
@triton.jit |
|
def weight_dequant_kernel(x_ptr, s_ptr, y_ptr, M, N, BLOCK_SIZE: tl.constexpr): |
|
""" |
|
Dequantizes weights using the provided scaling factors and stores the result. |
|
|
|
Args: |
|
x_ptr (tl.pointer): Pointer to the quantized weights. |
|
s_ptr (tl.pointer): Pointer to the scaling factors. |
|
y_ptr (tl.pointer): Pointer to the output buffer for dequantized weights. |
|
M (int): Number of rows in the weight matrix. |
|
N (int): Number of columns in the weight matrix. |
|
BLOCK_SIZE (tl.constexpr): Size of the block for tiling. |
|
|
|
Returns: |
|
None |
|
""" |
|
pid_m = tl.program_id(axis=0) |
|
pid_n = tl.program_id(axis=1) |
|
n = tl.cdiv(N, BLOCK_SIZE) |
|
offs_m = pid_m * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) |
|
offs_n = pid_n * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) |
|
offs = offs_m[:, None] * N + offs_n[None, :] |
|
mask = (offs_m[:, None] < M) & (offs_n[None, :] < N) |
|
x = tl.load(x_ptr + offs, mask=mask).to(tl.float32) |
|
s = tl.load(s_ptr + pid_m * n + pid_n) |
|
y = x * s |
|
tl.store(y_ptr + offs, y, mask=mask) |
|
|
|
|
|
def weight_dequant(x: torch.Tensor, s: torch.Tensor, block_size: int = 128) -> torch.Tensor: |
|
""" |
|
Dequantizes the given weight tensor using the provided scale tensor. |
|
|
|
Args: |
|
x (torch.Tensor): The quantized weight tensor of shape (M, N). |
|
s (torch.Tensor): The scale tensor of shape (M, N). |
|
block_size (int, optional): The block size to use for dequantization. Defaults to 128. |
|
|
|
Returns: |
|
torch.Tensor: The dequantized weight tensor of the same shape as `x`. |
|
|
|
Raises: |
|
AssertionError: If `x` or `s` are not contiguous or if their dimensions are not 2. |
|
""" |
|
assert x.is_contiguous() and s.is_contiguous() |
|
assert x.dim() == 2 and s.dim() == 2 |
|
M, N = x.size() |
|
y = torch.empty_like(x, dtype=torch.get_default_dtype()) |
|
grid = lambda meta: (triton.cdiv(M, meta['BLOCK_SIZE']), triton.cdiv(N, meta['BLOCK_SIZE'])) |
|
weight_dequant_kernel[grid](x, s, y, M, N, BLOCK_SIZE=block_size) |
|
return y |
|
|
|
|
|
fp8_gemm_configs = [ |
|
Config({'BLOCK_SIZE_M': block_m, 'BLOCK_SIZE_N': block_n, 'BLOCK_SIZE_K': 128}, num_stages=num_stages, num_warps=8) |
|
for block_m in [16, 32, 64] for block_n in [32, 64, 128] for num_stages in [3, 4, 5, 6] |
|
] |
|
|
|
@triton.autotune(configs=fp8_gemm_configs, key=['N', 'K']) |
|
@triton.jit |
|
def fp8_gemm_kernel(a_ptr, b_ptr, c_ptr, |
|
a_s_ptr, b_s_ptr, |
|
M, N: tl.constexpr, K: tl.constexpr, |
|
BLOCK_SIZE_M: tl.constexpr, |
|
BLOCK_SIZE_N: tl.constexpr, |
|
BLOCK_SIZE_K: tl.constexpr): |
|
""" |
|
Performs a matrix multiplication operation on FP8 matrices with scaling factors. |
|
|
|
Args: |
|
a_ptr (tl.tensor): Pointer to the first input matrix A. |
|
b_ptr (tl.tensor): Pointer to the second input matrix B. |
|
c_ptr (tl.tensor): Pointer to the output matrix C. |
|
a_s_ptr (tl.tensor): Pointer to the scaling factors for matrix A. |
|
b_s_ptr (tl.tensor): Pointer to the scaling factors for matrix B. |
|
M (int): Number of rows in matrix A and C. |
|
N (tl.constexpr): Number of columns in matrix B and C. |
|
K (tl.constexpr): Number of columns in matrix A and rows in matrix B. |
|
BLOCK_SIZE_M (tl.constexpr): Block size for the M dimension. |
|
BLOCK_SIZE_N (tl.constexpr): Block size for the N dimension. |
|
BLOCK_SIZE_K (tl.constexpr): Block size for the K dimension. |
|
|
|
Returns: |
|
None |
|
""" |
|
pid_m = tl.program_id(axis=0) |
|
pid_n = tl.program_id(axis=1) |
|
k = tl.cdiv(K, BLOCK_SIZE_K) |
|
offs_m = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M |
|
offs_n = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N |
|
offs_k = tl.arange(0, BLOCK_SIZE_K) |
|
a_ptrs = a_ptr + offs_m[:, None] * K + offs_k[None, :] |
|
b_ptrs = b_ptr + offs_n[None, :] * K + offs_k[:, None] |
|
a_s_ptrs = a_s_ptr + offs_m * k |
|
b_s_ptrs = b_s_ptr + (offs_n // BLOCK_SIZE_K) * k |
|
|
|
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) |
|
for i in range(k): |
|
a = tl.load(a_ptrs, mask=offs_k[None, :] < K - i * BLOCK_SIZE_K, other=0.0) |
|
b = tl.load(b_ptrs, mask=offs_k[:, None] < K - i * BLOCK_SIZE_K, other=0.0) |
|
a_s = tl.load(a_s_ptrs) |
|
b_s = tl.load(b_s_ptrs) |
|
accumulator += tl.dot(a, b) * a_s[:, None] * b_s[None, :] |
|
a_ptrs += BLOCK_SIZE_K |
|
b_ptrs += BLOCK_SIZE_K |
|
a_s_ptrs += 1 |
|
b_s_ptrs += 1 |
|
c = accumulator.to(c_ptr.dtype.element_ty) |
|
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) |
|
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) |
|
c_ptrs = c_ptr + offs_m[:, None] * N + offs_n[None, :] |
|
mask = (offs_m[:, None] < M) & (offs_n[None, :] < N) |
|
tl.store(c_ptrs, c, mask=mask) |
|
|
|
|
|
def fp8_gemm(a: torch.Tensor, a_s: torch.Tensor, b: torch.Tensor, b_s: torch.Tensor): |
|
""" |
|
Perform a matrix multiplication using FP8 precision. |
|
|
|
Args: |
|
a (torch.Tensor): The first input matrix, must be contiguous. |
|
a_s (torch.Tensor): The scaling factor for the first input matrix, must be contiguous. |
|
b (torch.Tensor): The second input matrix, must be contiguous. |
|
b_s (torch.Tensor): The scaling factor for the second input matrix, must be contiguous. |
|
|
|
Returns: |
|
torch.Tensor: The result of the matrix multiplication. |
|
""" |
|
assert a.is_contiguous() and b.is_contiguous() |
|
assert a_s.is_contiguous() and b_s.is_contiguous() |
|
K = a.size(-1) |
|
M = a.numel() // K |
|
N = b.size(0) |
|
c = a.new_empty(*a.size()[:-1], N, dtype=torch.get_default_dtype()) |
|
grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']), triton.cdiv(N, META['BLOCK_SIZE_N'])) |
|
fp8_gemm_kernel[grid](a, b, c, a_s, b_s, M, N, K) |
|
return c |
|
|