Spaces:
Running
Running
from functools import partial | |
from itertools import repeat | |
import numpy as np | |
from concurrent.futures import ProcessPoolExecutor | |
def intersection_area(box1, box2): | |
x_left = max(box1[0], box2[0]) | |
y_top = max(box1[1], box2[1]) | |
x_right = min(box1[2], box2[2]) | |
y_bottom = min(box1[3], box2[3]) | |
if x_right < x_left or y_bottom < y_top: | |
return 0.0 | |
return (x_right - x_left) * (y_bottom - y_top) | |
def box_area(box): | |
return (box[2] - box[0]) * (box[3] - box[1]) | |
def calculate_iou(box1, box2, box1_only=False): | |
intersection = intersection_area(box1, box2) | |
union = box_area(box1) | |
if not box1_only: | |
union += box_area(box2) - intersection | |
if union == 0: | |
return 0 | |
return intersection / union | |
def match_boxes(preds, references): | |
num_actual = len(references) | |
num_predicted = len(preds) | |
iou_matrix = np.zeros((num_actual, num_predicted)) | |
for i, actual in enumerate(references): | |
for j, pred in enumerate(preds): | |
iou_matrix[i, j] = calculate_iou(actual, pred, box1_only=True) | |
sorted_indices = np.argsort(iou_matrix, axis=None)[::-1] | |
sorted_ious = iou_matrix.flatten()[sorted_indices] | |
actual_indices, predicted_indices = np.unravel_index(sorted_indices, iou_matrix.shape) | |
assigned_actual = set() | |
assigned_pred = set() | |
matches = [] | |
for idx, iou in zip(zip(actual_indices, predicted_indices), sorted_ious): | |
i, j = idx | |
if i not in assigned_actual and j not in assigned_pred: | |
iou_val = iou_matrix[i, j] | |
if iou_val > .95: # Account for rounding on box edges | |
iou_val = 1.0 | |
matches.append((i, j, iou_val)) | |
assigned_actual.add(i) | |
assigned_pred.add(j) | |
unassigned_actual = set(range(num_actual)) - assigned_actual | |
unassigned_pred = set(range(num_predicted)) - assigned_pred | |
matches.extend([(i, None, -1.0) for i in unassigned_actual]) | |
matches.extend([(None, j, 0.0) for j in unassigned_pred]) | |
return matches | |
def penalized_iou_score(preds, references): | |
matches = match_boxes(preds, references) | |
iou = sum([match[2] for match in matches]) / len(matches) | |
return iou | |
def intersection_pixels(box1, box2): | |
x_left = max(box1[0], box2[0]) | |
y_top = max(box1[1], box2[1]) | |
x_right = min(box1[2], box2[2]) | |
y_bottom = min(box1[3], box2[3]) | |
if x_right < x_left or y_bottom < y_top: | |
return set() | |
x_left, x_right = int(x_left), int(x_right) | |
y_top, y_bottom = int(y_top), int(y_bottom) | |
coords = np.meshgrid(np.arange(x_left, x_right), np.arange(y_top, y_bottom)) | |
pixels = set(zip(coords[0].flat, coords[1].flat)) | |
return pixels | |
def calculate_coverage(box, other_boxes, penalize_double=False): | |
box_area = (box[2] - box[0]) * (box[3] - box[1]) | |
if box_area == 0: | |
return 0 | |
# find total coverage of the box | |
covered_pixels = set() | |
double_coverage = list() | |
for other_box in other_boxes: | |
ia = intersection_pixels(box, other_box) | |
double_coverage.append(list(covered_pixels.intersection(ia))) | |
covered_pixels = covered_pixels.union(ia) | |
# Penalize double coverage - having multiple bboxes overlapping the same pixels | |
double_coverage_penalty = len(double_coverage) | |
if not penalize_double: | |
double_coverage_penalty = 0 | |
covered_pixels_count = max(0, len(covered_pixels) - double_coverage_penalty) | |
return covered_pixels_count / box_area | |
def calculate_coverage_fast(box, other_boxes, penalize_double=False): | |
box_area = (box[2] - box[0]) * (box[3] - box[1]) | |
if box_area == 0: | |
return 0 | |
total_intersect = 0 | |
for other_box in other_boxes: | |
total_intersect += intersection_area(box, other_box) | |
return min(1, total_intersect / box_area) | |
def precision_recall(preds, references, threshold=.5, workers=8, penalize_double=True): | |
if len(references) == 0: | |
return { | |
"precision": 1, | |
"recall": 1, | |
} | |
if len(preds) == 0: | |
return { | |
"precision": 0, | |
"recall": 0, | |
} | |
# If we're not penalizing double coverage, we can use a faster calculation | |
coverage_func = calculate_coverage_fast | |
if penalize_double: | |
coverage_func = calculate_coverage | |
with ProcessPoolExecutor(max_workers=workers) as executor: | |
precision_func = partial(coverage_func, penalize_double=penalize_double) | |
precision_iou = executor.map(precision_func, preds, repeat(references)) | |
reference_iou = executor.map(coverage_func, references, repeat(preds)) | |
precision_classes = [1 if i > threshold else 0 for i in precision_iou] | |
precision = sum(precision_classes) / len(precision_classes) | |
recall_classes = [1 if i > threshold else 0 for i in reference_iou] | |
recall = sum(recall_classes) / len(recall_classes) | |
return { | |
"precision": precision, | |
"recall": recall, | |
} | |
def mean_coverage(preds, references): | |
coverages = [] | |
for box1 in references: | |
coverage = calculate_coverage(box1, preds) | |
coverages.append(coverage) | |
for box2 in preds: | |
coverage = calculate_coverage(box2, references) | |
coverages.append(coverage) | |
# Calculate the average coverage over all comparisons | |
if len(coverages) == 0: | |
return 0 | |
coverage = sum(coverages) / len(coverages) | |
return {"coverage": coverage} | |
def rank_accuracy(preds, references): | |
# Preds and references need to be aligned so each position refers to the same bbox | |
pairs = [] | |
for i, pred in enumerate(preds): | |
for j, pred2 in enumerate(preds): | |
if i == j: | |
continue | |
pairs.append((i, j, pred > pred2)) | |
# Find how many of the prediction rankings are correct | |
correct = 0 | |
for i, ref in enumerate(references): | |
for j, ref2 in enumerate(references): | |
if (i, j, ref > ref2) in pairs: | |
correct += 1 | |
return correct / len(pairs) |