Spaces:
Running
Running
File size: 6,023 Bytes
52f1bcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
from functools import partial
from itertools import repeat
import numpy as np
from concurrent.futures import ProcessPoolExecutor
def intersection_area(box1, box2):
x_left = max(box1[0], box2[0])
y_top = max(box1[1], box2[1])
x_right = min(box1[2], box2[2])
y_bottom = min(box1[3], box2[3])
if x_right < x_left or y_bottom < y_top:
return 0.0
return (x_right - x_left) * (y_bottom - y_top)
def box_area(box):
return (box[2] - box[0]) * (box[3] - box[1])
def calculate_iou(box1, box2, box1_only=False):
intersection = intersection_area(box1, box2)
union = box_area(box1)
if not box1_only:
union += box_area(box2) - intersection
if union == 0:
return 0
return intersection / union
def match_boxes(preds, references):
num_actual = len(references)
num_predicted = len(preds)
iou_matrix = np.zeros((num_actual, num_predicted))
for i, actual in enumerate(references):
for j, pred in enumerate(preds):
iou_matrix[i, j] = calculate_iou(actual, pred, box1_only=True)
sorted_indices = np.argsort(iou_matrix, axis=None)[::-1]
sorted_ious = iou_matrix.flatten()[sorted_indices]
actual_indices, predicted_indices = np.unravel_index(sorted_indices, iou_matrix.shape)
assigned_actual = set()
assigned_pred = set()
matches = []
for idx, iou in zip(zip(actual_indices, predicted_indices), sorted_ious):
i, j = idx
if i not in assigned_actual and j not in assigned_pred:
iou_val = iou_matrix[i, j]
if iou_val > .95: # Account for rounding on box edges
iou_val = 1.0
matches.append((i, j, iou_val))
assigned_actual.add(i)
assigned_pred.add(j)
unassigned_actual = set(range(num_actual)) - assigned_actual
unassigned_pred = set(range(num_predicted)) - assigned_pred
matches.extend([(i, None, -1.0) for i in unassigned_actual])
matches.extend([(None, j, 0.0) for j in unassigned_pred])
return matches
def penalized_iou_score(preds, references):
matches = match_boxes(preds, references)
iou = sum([match[2] for match in matches]) / len(matches)
return iou
def intersection_pixels(box1, box2):
x_left = max(box1[0], box2[0])
y_top = max(box1[1], box2[1])
x_right = min(box1[2], box2[2])
y_bottom = min(box1[3], box2[3])
if x_right < x_left or y_bottom < y_top:
return set()
x_left, x_right = int(x_left), int(x_right)
y_top, y_bottom = int(y_top), int(y_bottom)
coords = np.meshgrid(np.arange(x_left, x_right), np.arange(y_top, y_bottom))
pixels = set(zip(coords[0].flat, coords[1].flat))
return pixels
def calculate_coverage(box, other_boxes, penalize_double=False):
box_area = (box[2] - box[0]) * (box[3] - box[1])
if box_area == 0:
return 0
# find total coverage of the box
covered_pixels = set()
double_coverage = list()
for other_box in other_boxes:
ia = intersection_pixels(box, other_box)
double_coverage.append(list(covered_pixels.intersection(ia)))
covered_pixels = covered_pixels.union(ia)
# Penalize double coverage - having multiple bboxes overlapping the same pixels
double_coverage_penalty = len(double_coverage)
if not penalize_double:
double_coverage_penalty = 0
covered_pixels_count = max(0, len(covered_pixels) - double_coverage_penalty)
return covered_pixels_count / box_area
def calculate_coverage_fast(box, other_boxes, penalize_double=False):
box_area = (box[2] - box[0]) * (box[3] - box[1])
if box_area == 0:
return 0
total_intersect = 0
for other_box in other_boxes:
total_intersect += intersection_area(box, other_box)
return min(1, total_intersect / box_area)
def precision_recall(preds, references, threshold=.5, workers=8, penalize_double=True):
if len(references) == 0:
return {
"precision": 1,
"recall": 1,
}
if len(preds) == 0:
return {
"precision": 0,
"recall": 0,
}
# If we're not penalizing double coverage, we can use a faster calculation
coverage_func = calculate_coverage_fast
if penalize_double:
coverage_func = calculate_coverage
with ProcessPoolExecutor(max_workers=workers) as executor:
precision_func = partial(coverage_func, penalize_double=penalize_double)
precision_iou = executor.map(precision_func, preds, repeat(references))
reference_iou = executor.map(coverage_func, references, repeat(preds))
precision_classes = [1 if i > threshold else 0 for i in precision_iou]
precision = sum(precision_classes) / len(precision_classes)
recall_classes = [1 if i > threshold else 0 for i in reference_iou]
recall = sum(recall_classes) / len(recall_classes)
return {
"precision": precision,
"recall": recall,
}
def mean_coverage(preds, references):
coverages = []
for box1 in references:
coverage = calculate_coverage(box1, preds)
coverages.append(coverage)
for box2 in preds:
coverage = calculate_coverage(box2, references)
coverages.append(coverage)
# Calculate the average coverage over all comparisons
if len(coverages) == 0:
return 0
coverage = sum(coverages) / len(coverages)
return {"coverage": coverage}
def rank_accuracy(preds, references):
# Preds and references need to be aligned so each position refers to the same bbox
pairs = []
for i, pred in enumerate(preds):
for j, pred2 in enumerate(preds):
if i == j:
continue
pairs.append((i, j, pred > pred2))
# Find how many of the prediction rankings are correct
correct = 0
for i, ref in enumerate(references):
for j, ref2 in enumerate(references):
if (i, j, ref > ref2) in pairs:
correct += 1
return correct / len(pairs) |