File size: 25,569 Bytes
a40f4c0 3b08124 b5fb46a a40f4c0 5f6b7b3 3b08124 b5fb46a 335df8b cf1b180 335df8b cf1b180 335df8b cf1b180 335df8b cf1b180 b5fb46a 335df8b 5f6b7b3 b5fb46a 9557430 cf1b180 9557430 b5fb46a a40f4c0 b5fb46a a40f4c0 b5fb46a a40f4c0 b5fb46a a40f4c0 b5fb46a a40f4c0 b5fb46a a40f4c0 b5fb46a a40f4c0 b5fb46a a40f4c0 b5fb46a a40f4c0 b5fb46a a40f4c0 b5fb46a a40f4c0 b5fb46a a40f4c0 b5fb46a a40f4c0 b5fb46a a40f4c0 b5fb46a a40f4c0 b5fb46a a40f4c0 b5fb46a 9557430 b5fb46a 9557430 e168455 9557430 e168455 3b08124 9557430 b5fb46a a40f4c0 cf1b180 a40f4c0 cf1b180 a40f4c0 cf1b180 a40f4c0 cf1b180 a40f4c0 b5fb46a a40f4c0 b5fb46a a40f4c0 b5fb46a a40f4c0 b5fb46a 4857f00 9557430 a40f4c0 b5fb46a 3b08124 a40f4c0 9557430 a40f4c0 b5fb46a a40f4c0 b5fb46a a40f4c0 b5fb46a a40f4c0 b5fb46a a40f4c0 b5fb46a 9557430 3b08124 9557430 3b08124 9557430 a40f4c0 9557430 a40f4c0 3b08124 a40f4c0 3b08124 a40f4c0 9557430 a40f4c0 e168455 a40f4c0 e168455 b5fb46a 9557430 a40f4c0 a9ce554 a40f4c0 b5fb46a a40f4c0 9557430 a40f4c0 cf1b180 a40f4c0 9557430 a40f4c0 cf1b180 a40f4c0 9557430 b5fb46a 9557430 a40f4c0 0985f0e b5fb46a cf1b180 486b04b 268968a b5fb46a 3b08124 e168455 268968a f32dc70 3b08124 a40f4c0 b5fb46a 486b04b b5fb46a 486b04b 35dc834 49ec637 35dc834 a40f4c0 b5fb46a a40f4c0 486b04b a40f4c0 b5fb46a e168455 a40f4c0 b5fb46a a40f4c0 b5fb46a a40f4c0 b5fb46a 486b04b 3f65d5d dda9ed2 3f65d5d 3b08124 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
# -*- coding: utf-8 -*-
"""
Verbatify — Analyse sémantique NPS (Paste-only, NPS inféré)
Interface simplifiée : toutes les options sont appliquées automatiquement.
"""
import os, re, json, collections, tempfile, zipfile
from typing import List, Dict, Optional
import pandas as pd
import gradio as gr
import plotly.express as px
import plotly.graph_objects as go
import plotly.io as pio
# ====================== CSS (externe si présent, sinon fallback) ======================
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
CSS_FILE = os.path.join(BASE_DIR, "verbatim.css")
VB_CSS_FALLBACK = r"""
@import url('https://fonts.googleapis.com/css2?family=Manrope:wght@400;500;700;800&display=swap');
:root{--vb-bg:#F8FAFC;--vb-text:#0F172A;--vb-primary:#7C3AED;--vb-primary-2:#06B6D4;--vb-border:#E2E8F0;}
*{color-scheme:light !important}
html,body,.gradio-container{background:var(--vb-bg)!important;color:var(--vb-text)!important;
font-family:Manrope,system-ui,-apple-system,'Segoe UI',Roboto,Arial,sans-serif!important}
.gradio-container{max-width:1120px!important;margin:0 auto!important}
.vb-hero{display:flex;align-items:center;gap:16px;padding:20px 22px;margin:10px 0 20px;
background:linear-gradient(90deg,rgba(124,58,237,.18),rgba(6,182,212,.18));border:1px solid var(--vb-border);
border-radius:14px;box-shadow:0 10px 26px rgba(2,6,23,.08)}
.vb-hero .vb-title{font-size:22px;color:#0F172A;font-weight:500}
.vb-hero .vb-sub{font-size:13px;color:#0F172A}
.gradio-container .vb-cta{background:linear-gradient(90deg,var(--vb-primary),var(--vb-primary-2))!important;color:#fff!important;
border:0!important;font-weight:700!important;font-size:16px!important;padding:14px 18px!important;border-radius:14px!important;
box-shadow:0 10px 24px rgba(124,58,237,.28)}
.gradio-container .vb-cta:hover{transform:translateY(-2px);filter:brightness(1.05)}
/* Patch encarts vides & texte noir partout */
.gradio-container .empty,
.gradio-container [class*="unpadded_box"],
.gradio-container [class*="unpadded-box"],
.gradio-container .empty[class*="box"]{background:#FFFFFF!important;background-image:none!important;border:1px solid transparent!important;box-shadow:none!important}
.gradio-container .empty *, .gradio-container [class*="unpadded_box"] *{color:#0F172A!important;fill:#0F172A!important}
"""
VB_CSS = None
try:
if os.path.exists(CSS_FILE):
with open(CSS_FILE, "r", encoding="utf-8") as f:
VB_CSS = f.read()
except Exception:
VB_CSS = None
if not VB_CSS:
VB_CSS = VB_CSS_FALLBACK
# ====================== Plotly theme ======================
def apply_plotly_theme():
pio.templates["verbatify"] = go.layout.Template(
layout=go.Layout(
font=dict(family="Manrope, system-ui, -apple-system, Segoe UI, Roboto, Arial, sans-serif",
size=13, color="#0F172A"),
paper_bgcolor="white", plot_bgcolor="white",
colorway=["#7C3AED","#06B6D4","#2563EB","#10B981","#A855F7","#22D3EE","#1D4ED8","#0EA5E9"],
xaxis=dict(gridcolor="#E2E8F0", zerolinecolor="#E2E8F0"),
yaxis=dict(gridcolor="#E2E8F0", zerolinecolor="#E2E8F0"),
legend=dict(borderwidth=0, bgcolor="rgba(255,255,255,0)")
)
)
pio.templates.default = "verbatify"
LOGO_SVG = """<svg xmlns='http://www.w3.org/2000/svg' width='224' height='38' viewBox='0 0 224 38'>
<defs><linearGradient id='g' x1='0%' y1='0%' x2='100%'><stop offset='0%' stop-color='#7C3AED'/><stop offset='100%' stop-color='#06B6D4'/></linearGradient></defs>
<g fill='none' fill-rule='evenodd'>
<rect x='0' y='7' width='38' height='24' rx='12' fill='url(#g)'/>
<circle cx='13' cy='19' r='5' fill='#fff' opacity='0.95'/><circle cx='25' cy='19' r='5' fill='#fff' opacity='0.72'/>
<text x='46' y='25' font-family='Manrope, system-ui, -apple-system, Segoe UI, Roboto, Arial, sans-serif' font-size='20' font-weight='800' fill='#0F172A' letter-spacing='0.2'>Verbatify</text>
</g>
</svg>"""
# ====================== unidecode fallback ======================
try:
from unidecode import unidecode
except Exception:
import unicodedata
def unidecode(x):
try:
return unicodedata.normalize('NFKD', str(x)).encode('ascii','ignore').decode('ascii')
except Exception:
return str(x)
# ====================== Thésaurus ASSURANCE ======================
THEMES = {
"Remboursements santé":[r"\bremboursement[s]?\b", r"\bt[eé]l[eé]transmission\b", r"\bno[eé]mie\b",
r"\bprise\s*en\s*charge[s]?\b", r"\btaux\s+de\s+remboursement[s]?\b", r"\b(ameli|cpam)\b",
r"\bcompl[eé]mentaire\s+sant[eé]\b", r"\bmutuelle\b", r"\battestation[s]?\b", r"\bcarte\s+(mutuelle|tiers\s*payant)\b"],
"Tiers payant / Réseau de soins":[r"\btiers\s*payant\b", r"\br[ée]seau[x]?\s+de\s+soins\b",
r"\b(optique|dentaire|hospitalisation|pharmacie)\b", r"\bitelis\b", r"\bsant[eé]clair\b", r"\bkalixia\b"],
"Sinistres / Indemnisation":[r"\bsinistre[s]?\b", r"\bindemni(sation|ser)\b", r"\bexpertis[ea]\b",
r"\bd[eé]claration\s+de\s+sinistre\b", r"\bconstat\b", r"\bbris\s+de\s+glace\b", r"\bassistance\b", r"\bd[ée]pannage\b"],
"Adhésion / Contrat":[r"\badh[eé]sion[s]?\b", r"\bsouscription[s]?\b", r"\baffiliation[s]?\b", r"\bcontrat[s]?\b",
r"\bavenant[s]?\b", r"\bcarence[s]?\b", r"\brenouvellement[s]?\b", r"\br[eé]siliation[s]?\b"],
"Garanties / Exclusions / Franchise":[r"\bgarantie[s]?\b", r"\bexclusion[s]?\b", r"\bplafond[s]?\b",
r"\bfranchise[s]?\b", r"\bconditions\s+g[eé]n[eé]rales\b", r"\bnotice\b"],
"Cotisations / Facturation":[r"\bcotisation[s]?\b", r"\bpr[eé]l[eè]vement[s]?\b", r"\bech[eé]ancier[s]?\b",
r"\bfacture[s]?\b", r"\berreur[s]?\s+de\s+facturation\b", r"\bremboursement[s]?\b", r"\bRIB\b", r"\bIBAN\b"],
"Délais & Suivi dossier":[r"\bd[eé]lai[s]?\b", r"\btraitement[s]?\b", r"\bsuivi[s]?\b", r"\brelance[s]?\b", r"\bretard[s]?\b"],
"Espace client / App / Connexion":[r"\bespace\s+client\b", r"\bapplication\b", r"\bapp\b", r"\bsite\b",
r"\bconnexion\b", r"\bidentifiant[s]?\b", r"\bmot\s+de\s+passe\b", r"\bpaiement\s+en\s+ligne\b",
r"\bbogue[s]?\b", r"\bbug[s]?\b", r"\bnavigation\b", r"\binterface\b", r"\bUX\b"],
"Support / Conseiller":[r"\bSAV\b", r"\bservice[s]?\s+client[s]?\b", r"\bconseiller[s]?\b",
r"\b[rR][eé]ponse[s]?\b", r"\bjoignable[s]?\b", r"\brapp?el\b"],
"Communication / Transparence":[r"\binformation[s]?\b", r"\bcommunication\b", r"\btransparence\b",
r"\bclart[eé]\b", r"\bcourrier[s]?\b", r"\bmail[s]?\b", r"\bnotification[s]?\b"],
"Prix":[r"\bprix\b", r"\bcher[s]?\b", r"\bco[uû]t[s]?\b", r"\btarif[s]?\b",
r"\bcomp[eé]titif[s]?\b", r"\babusif[s]?\b", r"\bbon\s+rapport\s+qualit[eé]\s*prix\b"],
"Offre / Gamme":[r"\boffre[s]?\b", r"\bgamme[s]?\b", r"\bdisponibilit[eé][s]?\b", r"\bdevis\b", r"\bchoix\b", r"\bcatalogue[s]?\b"],
"Produit/Qualité":[r"\bqualit[eé]s?\b", r"\bfiable[s]?\b", r"\bconforme[s]?\b", r"\bnon\s+conforme[s]?\b",
r"\bd[eé]fectueux?[es]?\b", r"\bperformant[e]?[s]?\b"],
"Agence / Accueil":[r"\bagence[s]?\b", r"\bboutique[s]?\b", r"\baccueil\b", r"\bconseil[s]?\b", r"\battente\b", r"\bcaisse[s]?\b"],
}
# ====================== Sentiment (règles) ======================
POS_WORDS = {
"bien":1.0,"super":1.2,"parfait":1.4,"excellent":1.5,"ravi":1.2,"satisfait":1.0,
"rapide":0.8,"efficace":1.0,"fiable":1.0,"simple":0.8,"facile":0.8,"clair":0.8,"conforme":0.8,
"sympa":0.8,"professionnel":1.0,"réactif":1.0,"reactif":1.0,"compétent":1.0,"competent":1.0,
"top":1.2,"recommande":1.2,"recommandé":1.2,"bon":0.8
}
NEG_WORDS = {
"mauvais":-1.2,"horrible":-1.5,"nul":-1.2,"lent":-0.8,"cher":-0.9,"arnaque":-1.5,
"déçu":-1.2,"decu":-1.2,"incompétent":-1.3,"bug":-0.9,"bogue":-0.9,"problème":-1.0,
"probleme":-1.0,"attente":-0.6,"retard":-0.9,"erreur":-1.0,"compliqué":-0.8,"complique":-0.8,
"défectueux":-1.3,"defectueux":-1.3,"non conforme":-1.2,"impossible":-1.0,"difficile":-0.7
}
NEGATIONS = [r"\bpas\b", r"\bjamais\b", r"\bplus\b", r"\baucun[e]?\b", r"\brien\b", r"\bni\b", r"\bgu[eè]re\b"]
INTENSIFIERS = [r"\btr[eè]s\b", r"\bvraiment\b", r"\bextr[eê]mement\b", r"\bhyper\b"]
DIMINISHERS = [r"\bun[e]?\s+peu\b", r"\bassez\b", r"\bplut[oô]t\b", r"\bl[eé]g[eè]rement\b"]
INTENSIFIER_W, DIMINISHER_W = 1.5, 0.7
# ====================== OpenAI (auto) ======================
OPENAI_AVAILABLE = False
try:
from openai import OpenAI
if os.getenv("OPENAI_API_KEY"):
_client = OpenAI()
OPENAI_AVAILABLE = True
except Exception:
OPENAI_AVAILABLE = False
OA_MODEL = os.getenv("OPENAI_MODEL", "gpt-4o-mini")
OA_TEMP = float(os.getenv("OPENAI_TEMP", "0.1"))
TOP_K = int(os.getenv("VERBATIFY_TOPK", "10"))
# ====================== Utils ======================
def normalize(t:str)->str:
if not isinstance(t,str): return ""
return re.sub(r"\s+"," ",t.strip())
def to_analyzable(t:str)->str:
return unidecode(normalize(t.lower()))
def window_has(patterns:List[str], toks:List[str], i:int, w:int=3)->bool:
s=max(0,i-w); e=min(len(toks),i+w+1); win=" ".join(toks[s:e])
return any(re.search(p,win) for p in patterns)
def lexical_sentiment_score(text:str)->float:
toks = to_analyzable(text).split(); score=0.0
for i,t in enumerate(toks):
base = POS_WORDS.get(t,0.0) or NEG_WORDS.get(t,0.0)
if not base and i<len(toks)-1:
bi=f"{t} {toks[i+1]}"; base = NEG_WORDS.get(bi,0.0)
if base:
w=1.0
if window_has(INTENSIFIERS,toks,i): w*=INTENSIFIER_W
if window_has(DIMINISHERS,toks,i): w*=DIMINISHER_W
if window_has(NEGATIONS,toks,i): base*=-1
score+=base*w
return max(min(score,4.0),-4.0)
def lexical_sentiment_label(s:float)->str:
return "positive" if s>=0.3 else ("negatif" if s<=-0.3 else "neutre")
def detect_themes_regex(text:str):
t=to_analyzable(text); counts={}
for th,pats in THEMES.items():
c=sum(len(re.findall(p,t)) for p in pats)
if c>0: counts[th]=c
return list(counts.keys()), counts
def nps_bucket(s):
try:
v=int(s)
except:
return "inconnu"
return "promoter" if v>=9 else ("passive" if v>=7 else ("detractor" if v>=0 else "inconnu"))
def compute_nps(series):
vals=[]
for x in series.dropna().tolist():
try:
v=int(x)
if 0<=v<=10: vals.append(v)
except: pass
if not vals: return None
tot=len(vals); pro=sum(1 for v in vals if v>=9); det=sum(1 for v in vals if v<=6)
return 100.0*(pro/tot - det/tot)
def anonymize(t:str)->str:
if not isinstance(t,str): return ""
t=re.sub(r"[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}","[email]",t)
t=re.sub(r"\b(?:\+?\d[\s.-]?){7,}\b","[tel]",t)
return t
# --------- Coller du texte → DataFrame (AUTO : détecte "| note" en fin de ligne) ----------
def df_from_pasted_auto(text:str) -> pd.DataFrame:
lines = [l.strip() for l in (text or "").splitlines() if l.strip()]
rows = []
pat = re.compile(r"\|\s*(-?\d{1,2})\s*$")
for i, line in enumerate(lines, 1):
m = pat.search(line)
if m:
verb = line[:m.start()].strip()
score = m.group(1)
rows.append({"id": i, "comment": verb, "nps_score": pd.to_numeric(score, errors="coerce")})
else:
rows.append({"id": i, "comment": line, "nps_score": None})
return pd.DataFrame(rows)
# --------- OpenAI helpers (auto) ----------
def openai_json(model:str, system:str, user:str, temperature:float=0.0) -> Optional[dict]:
if not OPENAI_AVAILABLE: return None
try:
resp = _client.chat.completions.create(
model=model, temperature=temperature,
messages=[{"role":"system","content":system},{"role":"user","content":user}],
)
txt = resp.choices[0].message.content.strip()
m = re.search(r"\{.*\}", txt, re.S)
return json.loads(m.group(0) if m else txt)
except Exception:
return None
def oa_sentiment(comment:str) -> Optional[dict]:
system = "Tu es un classifieur FR. Réponds strictement en JSON."
user = f'Texte: {comment}\nDonne "label" parmi ["positive","neutre","negatif"] et "score" entre -4 et 4. JSON.'
return openai_json(OA_MODEL, system, user, OA_TEMP)
def oa_themes(comment:str) -> Optional[dict]:
system = "Tu maps le texte client vers un thésaurus assurance. Réponds strictement en JSON."
user = f"Texte: {comment}\nThésaurus: {json.dumps(list(THEMES.keys()), ensure_ascii=False)}\nRetourne {{'themes': [...], 'counts': {{...}}}}"
return openai_json(OA_MODEL, system, user, OA_TEMP)
def oa_summary(nps:Optional[float], dist:Dict[str,int], themes_df:pd.DataFrame) -> Optional[str]:
system = "Tu es un analyste CX FR. Donne une synthèse courte et actionnable en Markdown."
top = [] if themes_df is None else themes_df.head(6).to_dict(orient="records")
user = f"Données: NPS={None if nps is None else round(nps,1)}, Répartition={dist}, Thèmes={json.dumps(top, ensure_ascii=False)}"
j = openai_json(OA_MODEL, system, user, 0.2)
if isinstance(j, dict) and "text" in j: return j["text"]
if isinstance(j, dict): return ' '.join(str(v) for v in j.values())
return None
# --------- HF sentiment (optionnel)
def make_hf_pipe():
try:
from transformers import pipeline
return pipeline("text-classification",
model="cmarkea/distilcamembert-base-sentiment",
tokenizer="cmarkea/distilcamembert-base-sentiment")
except Exception:
return None
# --------- Inférence NPS depuis le sentiment ----------
def infer_nps_from_sentiment(label: str, score: float) -> int:
scaled = int(round((float(score) + 4.0) * 1.25)) # -4 -> 0, 0 -> 5, +4 -> 10
scaled = max(0, min(10, scaled))
if label == "positive":
return max(9, scaled)
if label == "negatif":
return min(6, scaled)
return 8 if score >= 0 else 7
# ====================== Graphiques ======================
def fig_nps_gauge(nps: Optional[float]) -> go.Figure:
v = 0.0 if nps is None else float(nps)
return go.Figure(go.Indicator(mode="gauge+number", value=v,
gauge={"axis":{"range":[-100,100]}, "bar":{"thickness":0.3}},
title={"text":"NPS (−100 à +100)"}))
def fig_sentiment_bar(dist: Dict[str,int]) -> go.Figure:
order = ["negatif","neutre","positive"]
x = [o for o in order if o in dist]; y = [dist.get(o,0) for o in x]
return px.bar(x=x, y=y, labels={"x":"Sentiment","y":"Nombre"}, title="Répartition des émotions")
def fig_top_themes(themes_df: pd.DataFrame, k: int) -> go.Figure:
if themes_df is None or themes_df.empty: return go.Figure()
d = themes_df.head(k); fig = px.bar(d, x="theme", y="total_mentions", title=f"Top {k} thèmes — occurrences")
fig.update_layout(xaxis_tickangle=-30); return fig
def fig_theme_balance(themes_df: pd.DataFrame, k: int) -> go.Figure:
if themes_df is None or themes_df.empty: return go.Figure()
d = themes_df.head(k)
d2 = d.melt(id_vars=["theme"], value_vars=["verbatims_pos","verbatims_neg"], var_name="type", value_name="count")
d2["type"] = d2["type"].map({"verbatims_pos":"Positifs","verbatims_neg":"Négatifs"})
fig = px.bar(d2, x="theme", y="count", color="type", barmode="stack", title=f"Top {k} thèmes — balance Pos/Neg")
fig.update_layout(xaxis_tickangle=-30); return fig
# ====================== Analyse principale (AUTO) ======================
def analyze_text(pasted_txt: str):
# 1) Parse auto + anonymisation
df = df_from_pasted_auto(pasted_txt or "")
if df.empty:
raise gr.Error("Colle au moins un verbatim (une ligne).")
df["comment"] = df["comment"].apply(anonymize)
# 2) Pipes
use_oa_sent = use_oa_themes = use_oa_summary = True
if not OPENAI_AVAILABLE:
use_oa_sent = use_oa_themes = use_oa_summary = False
hf_pipe = make_hf_pipe()
# 3) Boucle verbatims
rows=[]; theme_agg=collections.defaultdict(lambda:{"mentions":0,"pos":0,"neg":0})
used_hf=False; used_oa=False; any_inferred=False
for idx, r in df.iterrows():
cid=r.get("id", idx+1); comment=normalize(str(r["comment"]))
# Sentiment: OpenAI -> HF -> règles
sent=None
if use_oa_sent:
sent=oa_sentiment(comment); used_oa = used_oa or bool(sent)
if not sent and hf_pipe is not None and comment.strip():
try:
res=hf_pipe(comment); lab=str(res[0]["label"]).lower(); p=float(res[0].get("score",0.5))
if "1" in lab or "2" in lab: sent = {"label":"negatif","score":-4*p}
elif "3" in lab: sent = {"label":"neutre","score":0.0}
else: sent = {"label":"positive","score":4*p}
used_hf=True
except Exception:
sent=None
if not sent:
s=float(lexical_sentiment_score(comment))
sent={"label":lexical_sentiment_label(s),"score":s}
# Thèmes: regex (+ fusion OpenAI)
themes, counts = detect_themes_regex(comment)
if use_oa_themes:
tjson=oa_themes(comment)
if isinstance(tjson, dict):
used_oa=True
for th, c in (tjson.get("counts",{}) or {}).items():
if th in THEMES and int(c) > 0:
counts[th] = max(counts.get(th, 0), int(c))
themes = [th for th, c in counts.items() if c > 0]
# Note NPS existante ou inférée
given = r.get("nps_score", None)
try:
given = int(given) if given is not None and str(given).strip() != "" else None
except Exception:
given = None
if given is None:
inferred = infer_nps_from_sentiment(sent["label"], float(sent["score"]))
nps_final, nps_source, any_inferred = inferred, "inferred", True
else:
nps_final, nps_source = given, "given"
bucket = nps_bucket(nps_final)
for th, c in counts.items():
theme_agg[th]["mentions"] += c
if sent["label"] == "positive": theme_agg[th]["pos"] += 1
elif sent["label"] == "negatif": theme_agg[th]["neg"] += 1
rows.append({
"id": cid, "comment": comment,
"nps_score_given": given, "nps_score_inferred": nps_final if given is None else None,
"nps_score_final": nps_final, "nps_source": nps_source, "nps_bucket": bucket,
"sentiment_score": round(float(sent["score"]), 3), "sentiment_label": sent["label"],
"sentiment_source": "openai" if (use_oa_sent and used_oa) else ("huggingface" if used_hf else "rules"),
"themes": ", ".join(themes) if themes else "", "theme_counts_json": json.dumps(counts, ensure_ascii=False)
})
out_df=pd.DataFrame(rows)
nps=compute_nps(out_df["nps_score_final"])
dist=out_df["sentiment_label"].value_counts().to_dict()
# Stats par thème
trs=[]
for th, d in theme_agg.items():
trs.append({"theme":th,"total_mentions":int(d["mentions"]),
"verbatims_pos":int(d["pos"]),"verbatims_neg":int(d["neg"]),
"net_sentiment":int(d["pos"]-d["neg"])})
themes_df=pd.DataFrame(trs).sort_values(["total_mentions","net_sentiment"],ascending=[False,False])
# Synthèse
method = "OpenAI + HF + règles" if (OPENAI_AVAILABLE and used_hf) else ("OpenAI + règles" if OPENAI_AVAILABLE else ("HF + règles" if used_hf else "Règles"))
nps_label = "NPS global (inféré)" if any_inferred else "NPS global"
lines=[ "# Synthèse NPS & ressentis clients",
f"- **Méthode** : {method}",
f"- **{nps_label}** : {nps:.1f}" if nps is not None else f"- **{nps_label}** : n/a" ]
if dist:
tot=sum(dist.values()); pos=dist.get("positive",0); neg=dist.get("negatif",0); neu=dist.get("neutre",0)
lines.append(f"- **Répartition émotions** : positive {pos}/{tot}, neutre {neu}/{tot}, négative {neg}/{tot}")
if not themes_df.empty:
lines.append("\n## Thèmes les plus cités")
for th,m in themes_df.head(5)[["theme","total_mentions"]].values.tolist():
lines.append(f"- **{th}** : {m} occurrence(s)")
summary_md="\n".join(lines)
if OPENAI_AVAILABLE:
md = oa_summary(nps, dist, themes_df)
if md: summary_md = md + "\n\n---\n" + summary_md
# Exports
tmpdir=tempfile.mkdtemp(prefix="nps_gradio_")
enriched=os.path.join(tmpdir,"enriched_comments.csv")
themes=os.path.join(tmpdir,"themes_stats.csv")
summ=os.path.join(tmpdir,"summary.md")
out_df.to_csv(enriched,index=False,encoding="utf-8-sig")
themes_df.to_csv(themes,index=False,encoding="utf-8-sig")
with open(summ,"w",encoding="utf-8") as f: f.write(summary_md)
zip_path=os.path.join(tmpdir,"nps_outputs.zip")
with zipfile.ZipFile(zip_path,"w",zipfile.ZIP_DEFLATED) as z:
z.write(enriched,arcname="enriched_comments.csv")
z.write(themes,arcname="themes_stats.csv")
z.write(summ,arcname="summary.md")
# Panneaux & Graphes
def make_panels(dfT: pd.DataFrame):
if dfT is None or dfT.empty: return "—","—","—"
pos_top = dfT.sort_values(["verbatims_pos","total_mentions"], ascending=[False,False]).head(4)
neg_top = dfT.sort_values(["verbatims_neg","total_mentions"], ascending=[False,False]).head(4)
def bullets(df, col, label):
lines=[f"**{label}**"]
for _, r in df.iterrows(): lines.append(f"- **{r['theme']}** — {int(r[col])} verbatims")
return "\n".join(lines)
ench_md = bullets(pos_top, "verbatims_pos", "Points d’enchantement")
irr_md = bullets(neg_top, "verbatims_neg", "Irritants")
RECO_RULES = {
"Délais & Suivi dossier": "Réduire les délais (SLA), suivi proactif.",
"Cotisations / Facturation": "Clarifier factures, alerter anomalies.",
"Espace client / App / Connexion": "Corriger login/MDP, QA navigateurs.",
"Support / Conseiller": "Améliorer joignabilité, scripts, rappel auto.",
"Communication / Transparence": "Notifications étapes clés, messages clairs.",
"Sinistres / Indemnisation": "Transparence délais + suivi dossier.",
}
rec_lines=["**Recommandations**"]
for _, r in neg_top.iterrows():
rec_lines.append(f"- **{r['theme']}** — {RECO_RULES.get(r['theme'],'Plan d’action dédié')}")
return ench_md, irr_md, "\n".join(rec_lines)
ench_md, irr_md, reco_md = make_panels(themes_df)
fig_gauge = fig_nps_gauge(nps)
fig_emots = fig_sentiment_bar(dist)
k = max(1, int(TOP_K))
fig_top = fig_top_themes(themes_df, k)
fig_bal = fig_theme_balance(themes_df, k)
return (summary_md, themes_df.head(100), out_df.head(200), [enriched, themes, summ, zip_path],
ench_md, irr_md, reco_md, fig_gauge, fig_emots, fig_top, fig_bal)
# ====================== UI ======================
apply_plotly_theme()
with gr.Blocks(title="Verbatify, révélez la voix de vos assurés, simplement...", css=VB_CSS) as demo:
# Header
gr.HTML(
"<div class='vb-hero'>"
f"{LOGO_SVG}"
"<div><div class='vb-title'>Verbatify, révélez la voix de vos assurés, simplement...</div>"
"<div class='vb-sub'>Émotions • Thématiques • Occurrences • Synthèse • NPS</div></div>"
"</div>"
)
# Entrée minimale + bouton
with gr.Row():
pasted = gr.Textbox(
label="Verbatims (un par ligne)", lines=10,
placeholder="Exemple :\nRemboursement rapide, télétransmission OK | 10\nImpossible de joindre un conseiller | 3\nEspace client : bug à la connexion | 4",
scale=4
)
# cellule dédiée au bouton, qu'on va centrer avec le CSS
with gr.Column(elem_id="vb-cta-cell", scale=1):
run = gr.Button("Lancer l'analyse", elem_classes=["vb-cta"])
# Panneaux
with gr.Row():
ench_panel=gr.Markdown()
irr_panel=gr.Markdown()
reco_panel=gr.Markdown()
# Résultats + téléchargements
summary=gr.Markdown(label="Synthèse NPS & ressentis clients")
themes_table=gr.Dataframe(label="Thèmes — statistiques")
enriched_table=gr.Dataframe(label="Verbatims enrichis (aperçu)")
files_out=gr.Files(label="Téléchargements (CSV & ZIP)")
# Graphes
with gr.Row():
plot_nps = gr.Plot(label="NPS — Jauge")
plot_sent= gr.Plot(label="Répartition des émotions")
with gr.Row():
plot_top = gr.Plot(label="Top thèmes — occurrences")
plot_bal = gr.Plot(label="Top thèmes — balance Pos/Neg")
# Lancer
run.click(
analyze_text,
inputs=[pasted],
outputs=[summary, themes_table, enriched_table, files_out,
ench_panel, irr_panel, reco_panel,
plot_nps, plot_sent, plot_top, plot_bal]
)
gr.HTML(
'<div class="vb-footer">© Verbatify.com — Construit par '
'<a href="https://jeremy-lagache.fr/" target="_blank" rel="dofollow">Jérémy Lagache</a></div>'
)
if __name__ == "__main__":
demo.launch(share=False, show_api=False)
|