Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
"""
|
3 |
Verbatify — Analyse sémantique NPS (Paste-only, NPS inféré)
|
|
|
4 |
"""
|
5 |
|
6 |
import os, re, json, collections, tempfile, zipfile
|
7 |
-
from pathlib import Path
|
8 |
from typing import List, Dict, Optional
|
9 |
import pandas as pd
|
10 |
import gradio as gr
|
@@ -12,28 +12,47 @@ import plotly.express as px
|
|
12 |
import plotly.graph_objects as go
|
13 |
import plotly.io as pio
|
14 |
|
15 |
-
# ====================== CSS externe
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
def apply_plotly_theme():
|
38 |
pio.templates["verbatify"] = go.layout.Template(
|
39 |
layout=go.Layout(
|
@@ -53,11 +72,12 @@ LOGO_SVG = """<svg xmlns='http://www.w3.org/2000/svg' width='224' height='38' vi
|
|
53 |
<g fill='none' fill-rule='evenodd'>
|
54 |
<rect x='0' y='7' width='38' height='24' rx='12' fill='url(#g)'/>
|
55 |
<circle cx='13' cy='19' r='5' fill='#fff' opacity='0.95'/><circle cx='25' cy='19' r='5' fill='#fff' opacity='0.72'/>
|
56 |
-
<text x='46' y='25' font-family='Manrope, system-ui, -apple-system, Segoe UI, Roboto, Arial, sans-serif' font-size='20' font-weight='
|
57 |
</g>
|
58 |
</svg>"""
|
59 |
|
60 |
-
# ======================
|
|
|
61 |
try:
|
62 |
from unidecode import unidecode
|
63 |
except Exception:
|
@@ -68,7 +88,8 @@ except Exception:
|
|
68 |
except Exception:
|
69 |
return str(x)
|
70 |
|
71 |
-
# ======================
|
|
|
72 |
THEMES = {
|
73 |
"Remboursements santé":[r"\bremboursement[s]?\b", r"\bt[eé]l[eé]transmission\b", r"\bno[eé]mie\b",
|
74 |
r"\bprise\s*en\s*charge[s]?\b", r"\btaux\s+de\s+remboursement[s]?\b", r"\b(ameli|cpam)\b",
|
@@ -99,30 +120,42 @@ THEMES = {
|
|
99 |
"Agence / Accueil":[r"\bagence[s]?\b", r"\bboutique[s]?\b", r"\baccueil\b", r"\bconseil[s]?\b", r"\battente\b", r"\bcaisse[s]?\b"],
|
100 |
}
|
101 |
|
102 |
-
# ======================
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
111 |
NEGATIONS = [r"\bpas\b", r"\bjamais\b", r"\bplus\b", r"\baucun[e]?\b", r"\brien\b", r"\bni\b", r"\bgu[eè]re\b"]
|
112 |
INTENSIFIERS = [r"\btr[eè]s\b", r"\bvraiment\b", r"\bextr[eê]mement\b", r"\bhyper\b"]
|
113 |
DIMINISHERS = [r"\bun[e]?\s+peu\b", r"\bassez\b", r"\bplut[oô]t\b", r"\bl[eé]g[eè]rement\b"]
|
114 |
INTENSIFIER_W, DIMINISHER_W = 1.5, 0.7
|
115 |
|
116 |
-
# ====================== OpenAI (
|
|
|
117 |
OPENAI_AVAILABLE = False
|
118 |
try:
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
122 |
except Exception:
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
-
# ====================== UTILS ======================
|
126 |
def normalize(t:str)->str:
|
127 |
if not isinstance(t,str): return ""
|
128 |
return re.sub(r"\s+"," ",t.strip())
|
@@ -182,18 +215,22 @@ def anonymize(t:str)->str:
|
|
182 |
t=re.sub(r"\b(?:\+?\d[\s.-]?){7,}\b","[tel]",t)
|
183 |
return t
|
184 |
|
185 |
-
|
|
|
186 |
lines = [l.strip() for l in (text or "").splitlines() if l.strip()]
|
187 |
rows = []
|
|
|
188 |
for i, line in enumerate(lines, 1):
|
189 |
-
|
190 |
-
|
191 |
-
|
|
|
|
|
192 |
else:
|
193 |
-
rows.append({"id": i, "comment": line
|
194 |
return pd.DataFrame(rows)
|
195 |
|
196 |
-
#
|
197 |
def openai_json(model:str, system:str, user:str, temperature:float=0.0) -> Optional[dict]:
|
198 |
if not OPENAI_AVAILABLE: return None
|
199 |
try:
|
@@ -207,26 +244,26 @@ def openai_json(model:str, system:str, user:str, temperature:float=0.0) -> Optio
|
|
207 |
except Exception:
|
208 |
return None
|
209 |
|
210 |
-
def oa_sentiment(comment:str
|
211 |
system = "Tu es un classifieur FR. Réponds strictement en JSON."
|
212 |
user = f'Texte: {comment}\nDonne "label" parmi ["positive","neutre","negatif"] et "score" entre -4 et 4. JSON.'
|
213 |
-
return openai_json(
|
214 |
|
215 |
-
def oa_themes(comment:str
|
216 |
system = "Tu maps le texte client vers un thésaurus assurance. Réponds strictement en JSON."
|
217 |
user = f"Texte: {comment}\nThésaurus: {json.dumps(list(THEMES.keys()), ensure_ascii=False)}\nRetourne {{'themes': [...], 'counts': {{...}}}}"
|
218 |
-
return openai_json(
|
219 |
|
220 |
-
def oa_summary(nps:Optional[float], dist:Dict[str,int], themes_df:pd.DataFrame
|
221 |
system = "Tu es un analyste CX FR. Donne une synthèse courte et actionnable en Markdown."
|
222 |
top = [] if themes_df is None else themes_df.head(6).to_dict(orient="records")
|
223 |
user = f"Données: NPS={None if nps is None else round(nps,1)}, Répartition={dist}, Thèmes={json.dumps(top, ensure_ascii=False)}"
|
224 |
-
j = openai_json(
|
225 |
if isinstance(j, dict) and "text" in j: return j["text"]
|
226 |
if isinstance(j, dict): return ' '.join(str(v) for v in j.values())
|
227 |
return None
|
228 |
|
229 |
-
#
|
230 |
def make_hf_pipe():
|
231 |
try:
|
232 |
from transformers import pipeline
|
@@ -236,7 +273,7 @@ def make_hf_pipe():
|
|
236 |
except Exception:
|
237 |
return None
|
238 |
|
239 |
-
#
|
240 |
def infer_nps_from_sentiment(label: str, score: float) -> int:
|
241 |
scaled = int(round((float(score) + 4.0) * 1.25)) # -4 -> 0, 0 -> 5, +4 -> 10
|
242 |
scaled = max(0, min(10, scaled))
|
@@ -246,7 +283,8 @@ def infer_nps_from_sentiment(label: str, score: float) -> int:
|
|
246 |
return min(6, scaled)
|
247 |
return 8 if score >= 0 else 7
|
248 |
|
249 |
-
# ======================
|
|
|
250 |
def fig_nps_gauge(nps: Optional[float]) -> go.Figure:
|
251 |
v = 0.0 if nps is None else float(nps)
|
252 |
return go.Figure(go.Indicator(mode="gauge+number", value=v,
|
@@ -271,53 +309,49 @@ def fig_theme_balance(themes_df: pd.DataFrame, k: int) -> go.Figure:
|
|
271 |
fig = px.bar(d2, x="theme", y="count", color="type", barmode="stack", title=f"Top {k} thèmes — balance Pos/Neg")
|
272 |
fig.update_layout(xaxis_tickangle=-30); return fig
|
273 |
|
274 |
-
# ======================
|
275 |
-
def analyze_text(pasted_txt, has_sc, sep_chr,
|
276 |
-
do_anonymize, use_oa_sent, use_oa_themes, use_oa_summary,
|
277 |
-
oa_model, oa_temp, top_k):
|
278 |
|
279 |
-
|
|
|
|
|
280 |
if df.empty:
|
281 |
raise gr.Error("Colle au moins un verbatim (une ligne).")
|
|
|
282 |
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
if (use_oa_sent or use_oa_themes or use_oa_summary) and not OPENAI_AVAILABLE:
|
287 |
use_oa_sent = use_oa_themes = use_oa_summary = False
|
288 |
-
|
289 |
hf_pipe = make_hf_pipe()
|
290 |
-
def hf_sent(text:str):
|
291 |
-
if hf_pipe is None or not text.strip(): return None
|
292 |
-
try:
|
293 |
-
res=hf_pipe(text); lab=str(res[0]["label"]).lower(); p=float(res[0].get("score",0.5))
|
294 |
-
if "1" in lab or "2" in lab: return {"label":"negatif","score":-4*p}
|
295 |
-
if "3" in lab: return {"label":"neutre","score":0.0}
|
296 |
-
return {"label":"positive","score":4*p}
|
297 |
-
except Exception:
|
298 |
-
return None
|
299 |
|
|
|
300 |
rows=[]; theme_agg=collections.defaultdict(lambda:{"mentions":0,"pos":0,"neg":0})
|
301 |
used_hf=False; used_oa=False; any_inferred=False
|
302 |
|
303 |
for idx, r in df.iterrows():
|
304 |
cid=r.get("id", idx+1); comment=normalize(str(r["comment"]))
|
305 |
|
306 |
-
# Sentiment
|
307 |
sent=None
|
308 |
if use_oa_sent:
|
309 |
-
sent=oa_sentiment(comment
|
310 |
-
if not sent:
|
311 |
-
|
312 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
if not sent:
|
314 |
s=float(lexical_sentiment_score(comment))
|
315 |
sent={"label":lexical_sentiment_label(s),"score":s}
|
316 |
|
317 |
-
# Thèmes
|
318 |
themes, counts = detect_themes_regex(comment)
|
319 |
if use_oa_themes:
|
320 |
-
tjson=oa_themes(comment
|
321 |
if isinstance(tjson, dict):
|
322 |
used_oa=True
|
323 |
for th, c in (tjson.get("counts",{}) or {}).items():
|
@@ -325,7 +359,7 @@ def analyze_text(pasted_txt, has_sc, sep_chr,
|
|
325 |
counts[th] = max(counts.get(th, 0), int(c))
|
326 |
themes = [th for th, c in counts.items() if c > 0]
|
327 |
|
328 |
-
# NPS
|
329 |
given = r.get("nps_score", None)
|
330 |
try:
|
331 |
given = int(given) if given is not None and str(given).strip() != "" else None
|
@@ -367,7 +401,7 @@ def analyze_text(pasted_txt, has_sc, sep_chr,
|
|
367 |
themes_df=pd.DataFrame(trs).sort_values(["total_mentions","net_sentiment"],ascending=[False,False])
|
368 |
|
369 |
# Synthèse
|
370 |
-
method = "OpenAI + HF + règles" if (
|
371 |
nps_label = "NPS global (inféré)" if any_inferred else "NPS global"
|
372 |
lines=[ "# Synthèse NPS & ressentis clients",
|
373 |
f"- **Méthode** : {method}",
|
@@ -381,8 +415,8 @@ def analyze_text(pasted_txt, has_sc, sep_chr,
|
|
381 |
lines.append(f"- **{th}** : {m} occurrence(s)")
|
382 |
summary_md="\n".join(lines)
|
383 |
|
384 |
-
if
|
385 |
-
md = oa_summary(nps, dist, themes_df
|
386 |
if md: summary_md = md + "\n\n---\n" + summary_md
|
387 |
|
388 |
# Exports
|
@@ -426,7 +460,7 @@ def analyze_text(pasted_txt, has_sc, sep_chr,
|
|
426 |
ench_md, irr_md, reco_md = make_panels(themes_df)
|
427 |
fig_gauge = fig_nps_gauge(nps)
|
428 |
fig_emots = fig_sentiment_bar(dist)
|
429 |
-
k = max(1, int(
|
430 |
fig_top = fig_top_themes(themes_df, k)
|
431 |
fig_bal = fig_theme_balance(themes_df, k)
|
432 |
|
@@ -434,48 +468,41 @@ def analyze_text(pasted_txt, has_sc, sep_chr,
|
|
434 |
ench_md, irr_md, reco_md, fig_gauge, fig_emots, fig_top, fig_bal)
|
435 |
|
436 |
# ====================== UI ======================
|
|
|
437 |
apply_plotly_theme()
|
438 |
|
439 |
-
with gr.Blocks(title="Verbatify
|
|
|
440 |
gr.HTML(
|
441 |
"<div class='vb-hero'>"
|
442 |
f"{LOGO_SVG}"
|
443 |
"<div><div class='vb-title'>Verbatify — Analyse NPS</div>"
|
444 |
-
"<div class='vb-sub'>Émotions • Thématiques • Occurrences • Synthèse
|
445 |
"</div>"
|
446 |
)
|
447 |
|
448 |
-
|
|
|
449 |
pasted = gr.Textbox(
|
450 |
label="Verbatims (un par ligne)", lines=10,
|
451 |
placeholder="Exemple :\nRemboursement rapide, télétransmission OK | 10\nImpossible de joindre un conseiller | 3\nEspace client : bug à la connexion | 4",
|
|
|
452 |
)
|
453 |
-
|
454 |
-
has_score = gr.Checkbox(label="J’ai un score NPS par ligne", value=True) # déjà coché
|
455 |
-
sep = gr.Textbox(label="Séparateur score", value="|", scale=1)
|
456 |
-
|
457 |
-
with gr.Row():
|
458 |
-
anon=gr.Checkbox(label="Anonymiser emails / téléphones", value=True)
|
459 |
-
use_oa_sent=gr.Checkbox(label="OpenAI pour le sentiment", value=True)
|
460 |
-
use_oa_themes=gr.Checkbox(label="OpenAI pour les thèmes", value=True)
|
461 |
-
use_oa_summary=gr.Checkbox(label="OpenAI pour la synthèse", value=True)
|
462 |
-
|
463 |
-
with gr.Row():
|
464 |
-
oa_model=gr.Textbox(label="Modèle OpenAI", value="gpt-4o-mini")
|
465 |
-
oa_temp=gr.Slider(label="Température", minimum=0.0, maximum=1.0, value=0.1, step=0.1)
|
466 |
-
top_k=gr.Slider(label="Top thèmes (K) pour les graphes", minimum=5, maximum=20, value=10, step=1)
|
467 |
-
run=gr.Button("Lancer l'analyse", elem_classes=["vb-cta"])
|
468 |
|
|
|
469 |
with gr.Row():
|
470 |
ench_panel=gr.Markdown()
|
471 |
irr_panel=gr.Markdown()
|
472 |
reco_panel=gr.Markdown()
|
473 |
|
|
|
474 |
summary=gr.Markdown(label="Synthèse NPS & ressentis clients")
|
475 |
themes_table=gr.Dataframe(label="Thèmes — statistiques")
|
476 |
enriched_table=gr.Dataframe(label="Verbatims enrichis (aperçu)")
|
477 |
files_out=gr.Files(label="Téléchargements (CSV & ZIP)")
|
478 |
|
|
|
479 |
with gr.Row():
|
480 |
plot_nps = gr.Plot(label="NPS — Jauge")
|
481 |
plot_sent= gr.Plot(label="Répartition des émotions")
|
@@ -483,9 +510,10 @@ with gr.Blocks(title="Verbatify, révélez la voix de vos assurés, simplement",
|
|
483 |
plot_top = gr.Plot(label="Top thèmes — occurrences")
|
484 |
plot_bal = gr.Plot(label="Top thèmes — balance Pos/Neg")
|
485 |
|
|
|
486 |
run.click(
|
487 |
analyze_text,
|
488 |
-
inputs=[pasted
|
489 |
outputs=[summary, themes_table, enriched_table, files_out,
|
490 |
ench_panel, irr_panel, reco_panel,
|
491 |
plot_nps, plot_sent, plot_top, plot_bal]
|
@@ -493,7 +521,7 @@ with gr.Blocks(title="Verbatify, révélez la voix de vos assurés, simplement",
|
|
493 |
|
494 |
gr.HTML(
|
495 |
'<div class="vb-footer">© Verbatify.com — Construit par '
|
496 |
-
'<a href="https://jeremy-lagache.fr/" target="_blank" rel="
|
497 |
)
|
498 |
|
499 |
if __name__ == "__main__":
|
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
"""
|
3 |
Verbatify — Analyse sémantique NPS (Paste-only, NPS inféré)
|
4 |
+
Interface simplifiée : toutes les options sont appliquées automatiquement.
|
5 |
"""
|
6 |
|
7 |
import os, re, json, collections, tempfile, zipfile
|
|
|
8 |
from typing import List, Dict, Optional
|
9 |
import pandas as pd
|
10 |
import gradio as gr
|
|
|
12 |
import plotly.graph_objects as go
|
13 |
import plotly.io as pio
|
14 |
|
15 |
+
# ====================== CSS (externe si présent, sinon fallback) ======================
|
16 |
+
|
17 |
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
18 |
+
CSS_FILE = os.path.join(BASE_DIR, "verbatim.css")
|
19 |
+
|
20 |
+
VB_CSS_FALLBACK = r"""
|
21 |
+
@import url('https://fonts.googleapis.com/css2?family=Manrope:wght@400;500;700;800&display=swap');
|
22 |
+
:root{--vb-bg:#F8FAFC;--vb-text:#0F172A;--vb-primary:#7C3AED;--vb-primary-2:#06B6D4;--vb-border:#E2E8F0;}
|
23 |
+
*{color-scheme:light !important}
|
24 |
+
html,body,.gradio-container{background:var(--vb-bg)!important;color:var(--vb-text)!important;
|
25 |
+
font-family:Manrope,system-ui,-apple-system,'Segoe UI',Roboto,Arial,sans-serif!important}
|
26 |
+
.gradio-container{max-width:1120px!important;margin:0 auto!important}
|
27 |
+
.vb-hero{display:flex;align-items:center;gap:16px;padding:20px 22px;margin:10px 0 20px;
|
28 |
+
background:linear-gradient(90deg,rgba(124,58,237,.18),rgba(6,182,212,.18));border:1px solid var(--vb-border);
|
29 |
+
border-radius:14px;box-shadow:0 10px 26px rgba(2,6,23,.08)}
|
30 |
+
.vb-hero .vb-title{font-size:22px;color:#0F172A;font-weight:500}
|
31 |
+
.vb-hero .vb-sub{font-size:13px;color:#0F172A}
|
32 |
+
.gradio-container .vb-cta{background:linear-gradient(90deg,var(--vb-primary),var(--vb-primary-2))!important;color:#fff!important;
|
33 |
+
border:0!important;font-weight:700!important;font-size:16px!important;padding:14px 18px!important;border-radius:14px!important;
|
34 |
+
box-shadow:0 10px 24px rgba(124,58,237,.28)}
|
35 |
+
.gradio-container .vb-cta:hover{transform:translateY(-2px);filter:brightness(1.05)}
|
36 |
+
/* Patch encarts vides & texte noir partout */
|
37 |
+
.gradio-container .empty,
|
38 |
+
.gradio-container [class*="unpadded_box"],
|
39 |
+
.gradio-container [class*="unpadded-box"],
|
40 |
+
.gradio-container .empty[class*="box"]{background:#FFFFFF!important;background-image:none!important;border:1px solid transparent!important;box-shadow:none!important}
|
41 |
+
.gradio-container .empty *, .gradio-container [class*="unpadded_box"] *{color:#0F172A!important;fill:#0F172A!important}
|
42 |
+
"""
|
43 |
+
|
44 |
+
VB_CSS = None
|
45 |
+
try:
|
46 |
+
if os.path.exists(CSS_FILE):
|
47 |
+
with open(CSS_FILE, "r", encoding="utf-8") as f:
|
48 |
+
VB_CSS = f.read()
|
49 |
+
except Exception:
|
50 |
+
VB_CSS = None
|
51 |
+
if not VB_CSS:
|
52 |
+
VB_CSS = VB_CSS_FALLBACK
|
53 |
+
|
54 |
+
# ====================== Plotly theme ======================
|
55 |
+
|
56 |
def apply_plotly_theme():
|
57 |
pio.templates["verbatify"] = go.layout.Template(
|
58 |
layout=go.Layout(
|
|
|
72 |
<g fill='none' fill-rule='evenodd'>
|
73 |
<rect x='0' y='7' width='38' height='24' rx='12' fill='url(#g)'/>
|
74 |
<circle cx='13' cy='19' r='5' fill='#fff' opacity='0.95'/><circle cx='25' cy='19' r='5' fill='#fff' opacity='0.72'/>
|
75 |
+
<text x='46' y='25' font-family='Manrope, system-ui, -apple-system, Segoe UI, Roboto, Arial, sans-serif' font-size='20' font-weight='800' fill='#0F172A' letter-spacing='0.2'>Verbatify</text>
|
76 |
</g>
|
77 |
</svg>"""
|
78 |
|
79 |
+
# ====================== unidecode fallback ======================
|
80 |
+
|
81 |
try:
|
82 |
from unidecode import unidecode
|
83 |
except Exception:
|
|
|
88 |
except Exception:
|
89 |
return str(x)
|
90 |
|
91 |
+
# ====================== Thésaurus ASSURANCE ======================
|
92 |
+
|
93 |
THEMES = {
|
94 |
"Remboursements santé":[r"\bremboursement[s]?\b", r"\bt[eé]l[eé]transmission\b", r"\bno[eé]mie\b",
|
95 |
r"\bprise\s*en\s*charge[s]?\b", r"\btaux\s+de\s+remboursement[s]?\b", r"\b(ameli|cpam)\b",
|
|
|
120 |
"Agence / Accueil":[r"\bagence[s]?\b", r"\bboutique[s]?\b", r"\baccueil\b", r"\bconseil[s]?\b", r"\battente\b", r"\bcaisse[s]?\b"],
|
121 |
}
|
122 |
|
123 |
+
# ====================== Sentiment (règles) ======================
|
124 |
+
|
125 |
+
POS_WORDS = {
|
126 |
+
"bien":1.0,"super":1.2,"parfait":1.4,"excellent":1.5,"ravi":1.2,"satisfait":1.0,
|
127 |
+
"rapide":0.8,"efficace":1.0,"fiable":1.0,"simple":0.8,"facile":0.8,"clair":0.8,"conforme":0.8,
|
128 |
+
"sympa":0.8,"professionnel":1.0,"réactif":1.0,"reactif":1.0,"compétent":1.0,"competent":1.0,
|
129 |
+
"top":1.2,"recommande":1.2,"recommandé":1.2,"bon":0.8
|
130 |
+
}
|
131 |
+
NEG_WORDS = {
|
132 |
+
"mauvais":-1.2,"horrible":-1.5,"nul":-1.2,"lent":-0.8,"cher":-0.9,"arnaque":-1.5,
|
133 |
+
"déçu":-1.2,"decu":-1.2,"incompétent":-1.3,"bug":-0.9,"bogue":-0.9,"problème":-1.0,
|
134 |
+
"probleme":-1.0,"attente":-0.6,"retard":-0.9,"erreur":-1.0,"compliqué":-0.8,"complique":-0.8,
|
135 |
+
"défectueux":-1.3,"defectueux":-1.3,"non conforme":-1.2,"impossible":-1.0,"difficile":-0.7
|
136 |
+
}
|
137 |
NEGATIONS = [r"\bpas\b", r"\bjamais\b", r"\bplus\b", r"\baucun[e]?\b", r"\brien\b", r"\bni\b", r"\bgu[eè]re\b"]
|
138 |
INTENSIFIERS = [r"\btr[eè]s\b", r"\bvraiment\b", r"\bextr[eê]mement\b", r"\bhyper\b"]
|
139 |
DIMINISHERS = [r"\bun[e]?\s+peu\b", r"\bassez\b", r"\bplut[oô]t\b", r"\bl[eé]g[eè]rement\b"]
|
140 |
INTENSIFIER_W, DIMINISHER_W = 1.5, 0.7
|
141 |
|
142 |
+
# ====================== OpenAI (auto) ======================
|
143 |
+
|
144 |
OPENAI_AVAILABLE = False
|
145 |
try:
|
146 |
+
from openai import OpenAI
|
147 |
+
if os.getenv("OPENAI_API_KEY"):
|
148 |
+
_client = OpenAI()
|
149 |
+
OPENAI_AVAILABLE = True
|
150 |
except Exception:
|
151 |
+
OPENAI_AVAILABLE = False
|
152 |
+
|
153 |
+
OA_MODEL = os.getenv("OPENAI_MODEL", "gpt-4o-mini")
|
154 |
+
OA_TEMP = float(os.getenv("OPENAI_TEMP", "0.1"))
|
155 |
+
TOP_K = int(os.getenv("VERBATIFY_TOPK", "10"))
|
156 |
+
|
157 |
+
# ====================== Utils ======================
|
158 |
|
|
|
159 |
def normalize(t:str)->str:
|
160 |
if not isinstance(t,str): return ""
|
161 |
return re.sub(r"\s+"," ",t.strip())
|
|
|
215 |
t=re.sub(r"\b(?:\+?\d[\s.-]?){7,}\b","[tel]",t)
|
216 |
return t
|
217 |
|
218 |
+
# --------- Coller du texte → DataFrame (AUTO : détecte "| note" en fin de ligne) ----------
|
219 |
+
def df_from_pasted_auto(text:str) -> pd.DataFrame:
|
220 |
lines = [l.strip() for l in (text or "").splitlines() if l.strip()]
|
221 |
rows = []
|
222 |
+
pat = re.compile(r"\|\s*(-?\d{1,2})\s*$")
|
223 |
for i, line in enumerate(lines, 1):
|
224 |
+
m = pat.search(line)
|
225 |
+
if m:
|
226 |
+
verb = line[:m.start()].strip()
|
227 |
+
score = m.group(1)
|
228 |
+
rows.append({"id": i, "comment": verb, "nps_score": pd.to_numeric(score, errors="coerce")})
|
229 |
else:
|
230 |
+
rows.append({"id": i, "comment": line, "nps_score": None})
|
231 |
return pd.DataFrame(rows)
|
232 |
|
233 |
+
# --------- OpenAI helpers (auto) ----------
|
234 |
def openai_json(model:str, system:str, user:str, temperature:float=0.0) -> Optional[dict]:
|
235 |
if not OPENAI_AVAILABLE: return None
|
236 |
try:
|
|
|
244 |
except Exception:
|
245 |
return None
|
246 |
|
247 |
+
def oa_sentiment(comment:str) -> Optional[dict]:
|
248 |
system = "Tu es un classifieur FR. Réponds strictement en JSON."
|
249 |
user = f'Texte: {comment}\nDonne "label" parmi ["positive","neutre","negatif"] et "score" entre -4 et 4. JSON.'
|
250 |
+
return openai_json(OA_MODEL, system, user, OA_TEMP)
|
251 |
|
252 |
+
def oa_themes(comment:str) -> Optional[dict]:
|
253 |
system = "Tu maps le texte client vers un thésaurus assurance. Réponds strictement en JSON."
|
254 |
user = f"Texte: {comment}\nThésaurus: {json.dumps(list(THEMES.keys()), ensure_ascii=False)}\nRetourne {{'themes': [...], 'counts': {{...}}}}"
|
255 |
+
return openai_json(OA_MODEL, system, user, OA_TEMP)
|
256 |
|
257 |
+
def oa_summary(nps:Optional[float], dist:Dict[str,int], themes_df:pd.DataFrame) -> Optional[str]:
|
258 |
system = "Tu es un analyste CX FR. Donne une synthèse courte et actionnable en Markdown."
|
259 |
top = [] if themes_df is None else themes_df.head(6).to_dict(orient="records")
|
260 |
user = f"Données: NPS={None if nps is None else round(nps,1)}, Répartition={dist}, Thèmes={json.dumps(top, ensure_ascii=False)}"
|
261 |
+
j = openai_json(OA_MODEL, system, user, 0.2)
|
262 |
if isinstance(j, dict) and "text" in j: return j["text"]
|
263 |
if isinstance(j, dict): return ' '.join(str(v) for v in j.values())
|
264 |
return None
|
265 |
|
266 |
+
# --------- HF sentiment (optionnel)
|
267 |
def make_hf_pipe():
|
268 |
try:
|
269 |
from transformers import pipeline
|
|
|
273 |
except Exception:
|
274 |
return None
|
275 |
|
276 |
+
# --------- Inférence NPS depuis le sentiment ----------
|
277 |
def infer_nps_from_sentiment(label: str, score: float) -> int:
|
278 |
scaled = int(round((float(score) + 4.0) * 1.25)) # -4 -> 0, 0 -> 5, +4 -> 10
|
279 |
scaled = max(0, min(10, scaled))
|
|
|
283 |
return min(6, scaled)
|
284 |
return 8 if score >= 0 else 7
|
285 |
|
286 |
+
# ====================== Graphiques ======================
|
287 |
+
|
288 |
def fig_nps_gauge(nps: Optional[float]) -> go.Figure:
|
289 |
v = 0.0 if nps is None else float(nps)
|
290 |
return go.Figure(go.Indicator(mode="gauge+number", value=v,
|
|
|
309 |
fig = px.bar(d2, x="theme", y="count", color="type", barmode="stack", title=f"Top {k} thèmes — balance Pos/Neg")
|
310 |
fig.update_layout(xaxis_tickangle=-30); return fig
|
311 |
|
312 |
+
# ====================== Analyse principale (AUTO) ======================
|
|
|
|
|
|
|
313 |
|
314 |
+
def analyze_text(pasted_txt: str):
|
315 |
+
# 1) Parse auto + anonymisation
|
316 |
+
df = df_from_pasted_auto(pasted_txt or "")
|
317 |
if df.empty:
|
318 |
raise gr.Error("Colle au moins un verbatim (une ligne).")
|
319 |
+
df["comment"] = df["comment"].apply(anonymize)
|
320 |
|
321 |
+
# 2) Pipes
|
322 |
+
use_oa_sent = use_oa_themes = use_oa_summary = True
|
323 |
+
if not OPENAI_AVAILABLE:
|
|
|
324 |
use_oa_sent = use_oa_themes = use_oa_summary = False
|
|
|
325 |
hf_pipe = make_hf_pipe()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
|
327 |
+
# 3) Boucle verbatims
|
328 |
rows=[]; theme_agg=collections.defaultdict(lambda:{"mentions":0,"pos":0,"neg":0})
|
329 |
used_hf=False; used_oa=False; any_inferred=False
|
330 |
|
331 |
for idx, r in df.iterrows():
|
332 |
cid=r.get("id", idx+1); comment=normalize(str(r["comment"]))
|
333 |
|
334 |
+
# Sentiment: OpenAI -> HF -> règles
|
335 |
sent=None
|
336 |
if use_oa_sent:
|
337 |
+
sent=oa_sentiment(comment); used_oa = used_oa or bool(sent)
|
338 |
+
if not sent and hf_pipe is not None and comment.strip():
|
339 |
+
try:
|
340 |
+
res=hf_pipe(comment); lab=str(res[0]["label"]).lower(); p=float(res[0].get("score",0.5))
|
341 |
+
if "1" in lab or "2" in lab: sent = {"label":"negatif","score":-4*p}
|
342 |
+
elif "3" in lab: sent = {"label":"neutre","score":0.0}
|
343 |
+
else: sent = {"label":"positive","score":4*p}
|
344 |
+
used_hf=True
|
345 |
+
except Exception:
|
346 |
+
sent=None
|
347 |
if not sent:
|
348 |
s=float(lexical_sentiment_score(comment))
|
349 |
sent={"label":lexical_sentiment_label(s),"score":s}
|
350 |
|
351 |
+
# Thèmes: regex (+ fusion OpenAI)
|
352 |
themes, counts = detect_themes_regex(comment)
|
353 |
if use_oa_themes:
|
354 |
+
tjson=oa_themes(comment)
|
355 |
if isinstance(tjson, dict):
|
356 |
used_oa=True
|
357 |
for th, c in (tjson.get("counts",{}) or {}).items():
|
|
|
359 |
counts[th] = max(counts.get(th, 0), int(c))
|
360 |
themes = [th for th, c in counts.items() if c > 0]
|
361 |
|
362 |
+
# Note NPS existante ou inférée
|
363 |
given = r.get("nps_score", None)
|
364 |
try:
|
365 |
given = int(given) if given is not None and str(given).strip() != "" else None
|
|
|
401 |
themes_df=pd.DataFrame(trs).sort_values(["total_mentions","net_sentiment"],ascending=[False,False])
|
402 |
|
403 |
# Synthèse
|
404 |
+
method = "OpenAI + HF + règles" if (OPENAI_AVAILABLE and used_hf) else ("OpenAI + règles" if OPENAI_AVAILABLE else ("HF + règles" if used_hf else "Règles"))
|
405 |
nps_label = "NPS global (inféré)" if any_inferred else "NPS global"
|
406 |
lines=[ "# Synthèse NPS & ressentis clients",
|
407 |
f"- **Méthode** : {method}",
|
|
|
415 |
lines.append(f"- **{th}** : {m} occurrence(s)")
|
416 |
summary_md="\n".join(lines)
|
417 |
|
418 |
+
if OPENAI_AVAILABLE:
|
419 |
+
md = oa_summary(nps, dist, themes_df)
|
420 |
if md: summary_md = md + "\n\n---\n" + summary_md
|
421 |
|
422 |
# Exports
|
|
|
460 |
ench_md, irr_md, reco_md = make_panels(themes_df)
|
461 |
fig_gauge = fig_nps_gauge(nps)
|
462 |
fig_emots = fig_sentiment_bar(dist)
|
463 |
+
k = max(1, int(TOP_K))
|
464 |
fig_top = fig_top_themes(themes_df, k)
|
465 |
fig_bal = fig_theme_balance(themes_df, k)
|
466 |
|
|
|
468 |
ench_md, irr_md, reco_md, fig_gauge, fig_emots, fig_top, fig_bal)
|
469 |
|
470 |
# ====================== UI ======================
|
471 |
+
|
472 |
apply_plotly_theme()
|
473 |
|
474 |
+
with gr.Blocks(title="Verbatify — Analyse NPS", css=VB_CSS) as demo:
|
475 |
+
# Header
|
476 |
gr.HTML(
|
477 |
"<div class='vb-hero'>"
|
478 |
f"{LOGO_SVG}"
|
479 |
"<div><div class='vb-title'>Verbatify — Analyse NPS</div>"
|
480 |
+
"<div class='vb-sub'>Émotions • Thématiques • Occurrences • Synthèse</div></div>"
|
481 |
"</div>"
|
482 |
)
|
483 |
|
484 |
+
# Entrée minimale + bouton
|
485 |
+
with gr.Row():
|
486 |
pasted = gr.Textbox(
|
487 |
label="Verbatims (un par ligne)", lines=10,
|
488 |
placeholder="Exemple :\nRemboursement rapide, télétransmission OK | 10\nImpossible de joindre un conseiller | 3\nEspace client : bug à la connexion | 4",
|
489 |
+
scale=4
|
490 |
)
|
491 |
+
run = gr.Button("Lancer l'analyse", elem_classes=["vb-cta"], scale=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
492 |
|
493 |
+
# Panneaux
|
494 |
with gr.Row():
|
495 |
ench_panel=gr.Markdown()
|
496 |
irr_panel=gr.Markdown()
|
497 |
reco_panel=gr.Markdown()
|
498 |
|
499 |
+
# Résultats + téléchargements
|
500 |
summary=gr.Markdown(label="Synthèse NPS & ressentis clients")
|
501 |
themes_table=gr.Dataframe(label="Thèmes — statistiques")
|
502 |
enriched_table=gr.Dataframe(label="Verbatims enrichis (aperçu)")
|
503 |
files_out=gr.Files(label="Téléchargements (CSV & ZIP)")
|
504 |
|
505 |
+
# Graphes
|
506 |
with gr.Row():
|
507 |
plot_nps = gr.Plot(label="NPS — Jauge")
|
508 |
plot_sent= gr.Plot(label="Répartition des émotions")
|
|
|
510 |
plot_top = gr.Plot(label="Top thèmes — occurrences")
|
511 |
plot_bal = gr.Plot(label="Top thèmes — balance Pos/Neg")
|
512 |
|
513 |
+
# Lancer
|
514 |
run.click(
|
515 |
analyze_text,
|
516 |
+
inputs=[pasted],
|
517 |
outputs=[summary, themes_table, enriched_table, files_out,
|
518 |
ench_panel, irr_panel, reco_panel,
|
519 |
plot_nps, plot_sent, plot_top, plot_bal]
|
|
|
521 |
|
522 |
gr.HTML(
|
523 |
'<div class="vb-footer">© Verbatify.com — Construit par '
|
524 |
+
'<a href="https://jeremy-lagache.fr/" target="_blank" rel="noopener">Jérémy Lagache</a></div>'
|
525 |
)
|
526 |
|
527 |
if __name__ == "__main__":
|