Spaces:
Running
Running
from sentence_transformers import SentenceTransformer | |
import pinecone | |
import openai | |
import streamlit as st | |
openai.api_key = "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" | |
model = SentenceTransformer('all-MiniLM-L6-v2') | |
pinecone.init(api_key='6f66d7f3-7478-4d25-9789-78cfef84ab52', environment='asia-southeast1-gcp-free') | |
index = pinecone.Index('langchain-chatbot') | |
def find_match(input): | |
input_em = model.encode(input).tolist() | |
result = index.query(input_em, top_k=2, includeMetadata=True) | |
return result['matches'][0]['metadata']['text']+"\n"+result['matches'][1]['metadata']['text'] | |
def query_refiner(conversation, query): | |
response = openai.Completion.create( | |
model="text-davinci-003", | |
prompt=f"Given the following user query and conversation log, formulate a question that would be the most relevant to provide the user with an answer from a knowledge base.\n\nCONVERSATION LOG: \n{conversation}\n\nQuery: {query}\n\nRefined Query:", | |
temperature=0.7, | |
max_tokens=256, | |
top_p=1, | |
frequency_penalty=0, | |
presence_penalty=0 | |
) | |
return response['choices'][0]['text'] | |
def get_conversation_string(): | |
conversation_string = "" | |
for i in range(len(st.session_state['responses'])-1): | |
conversation_string += "Human: "+st.session_state['requests'][i] + "\n" | |
conversation_string += "Bot: "+ st.session_state['responses'][i+1] + "\n" | |
return conversation_string |