File size: 1,441 Bytes
e292f19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from sentence_transformers import SentenceTransformer
import pinecone
import openai
import streamlit as st
openai.api_key = "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"
model = SentenceTransformer('all-MiniLM-L6-v2')

pinecone.init(api_key='6f66d7f3-7478-4d25-9789-78cfef84ab52', environment='asia-southeast1-gcp-free')
index = pinecone.Index('langchain-chatbot')

def find_match(input):
    input_em = model.encode(input).tolist()
    result = index.query(input_em, top_k=2, includeMetadata=True)
    return result['matches'][0]['metadata']['text']+"\n"+result['matches'][1]['metadata']['text']

def query_refiner(conversation, query):

    response = openai.Completion.create(
    model="text-davinci-003",
    prompt=f"Given the following user query and conversation log, formulate a question that would be the most relevant to provide the user with an answer from a knowledge base.\n\nCONVERSATION LOG: \n{conversation}\n\nQuery: {query}\n\nRefined Query:",
    temperature=0.7,
    max_tokens=256,
    top_p=1,
    frequency_penalty=0,
    presence_penalty=0
    )
    return response['choices'][0]['text']

def get_conversation_string():
    conversation_string = ""
    for i in range(len(st.session_state['responses'])-1):
        
        conversation_string += "Human: "+st.session_state['requests'][i] + "\n"
        conversation_string += "Bot: "+ st.session_state['responses'][i+1] + "\n"
    return conversation_string