Indrajitkulkarni's picture
Update app.py
68503c5 verified
from dotenv import load_dotenv
load_dotenv() # Load the all envirement variable from .env
import streamlit as st
import os
from PIL import Image
import google.generativeai as genai
genai.configure(api_key=os.getenv("google_api_key"))
model=genai.GenerativeModel('gemini-1.5-flash') # Load gemini pero version Model
def get_gemini_response(input,image,user_prompt):
response=model.generate_content([input,image[0],user_prompt])
return response.text
def input_image_details(uploaded_file):
if uploaded_file is not None:
bytes_data=uploaded_file.getvalue() # Read the files into bytes
image_parts=[
{
"mime_type":uploaded_file.type, # get th mime type of the uploaded file
"data":bytes_data
}
]
return image_parts
else:
raise FileNotFoundError("No file uploaded")
# Initialize our streamlit app
st.set_page_config(page_title='Multilanguage Invoice Extractor')
st.header('Multilanguage Invoice Extractor')
input=st.text_input("input prompt:",key="input")
uploaded_file=st.file_uploader("Chose an image of the Invoice....",type=["jpg","jpeg","png"])
if uploaded_file is not None:
image=Image.open(uploaded_file)
st.image(image,caption="uploaded image.",use_column_width=True)
input_prompt="""
You are an expert in understanding invoices. We upload a image as invoice
and you will have to answer any quetions based on the uploaded invoice image
"""
submit=st.button('Tell me about the invoice')
if submit:
image_data=input_image_details(uploaded_file)
response=get_gemini_response(input_prompt,image_data,input)
st.subheader("The Response is")
st.write(response)