from dotenv import load_dotenv load_dotenv() # Load the all envirement variable from .env import streamlit as st import os from PIL import Image import google.generativeai as genai genai.configure(api_key=os.getenv("google_api_key")) model=genai.GenerativeModel('gemini-1.5-flash') # Load gemini pero version Model def get_gemini_response(input,image,user_prompt): response=model.generate_content([input,image[0],user_prompt]) return response.text def input_image_details(uploaded_file): if uploaded_file is not None: bytes_data=uploaded_file.getvalue() # Read the files into bytes image_parts=[ { "mime_type":uploaded_file.type, # get th mime type of the uploaded file "data":bytes_data } ] return image_parts else: raise FileNotFoundError("No file uploaded") # Initialize our streamlit app st.set_page_config(page_title='Multilanguage Invoice Extractor') st.header('Multilanguage Invoice Extractor') input=st.text_input("input prompt:",key="input") uploaded_file=st.file_uploader("Chose an image of the Invoice....",type=["jpg","jpeg","png"]) if uploaded_file is not None: image=Image.open(uploaded_file) st.image(image,caption="uploaded image.",use_column_width=True) input_prompt=""" You are an expert in understanding invoices. We upload a image as invoice and you will have to answer any quetions based on the uploaded invoice image """ submit=st.button('Tell me about the invoice') if submit: image_data=input_image_details(uploaded_file) response=get_gemini_response(input_prompt,image_data,input) st.subheader("The Response is") st.write(response)