File size: 15,485 Bytes
e00482a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11255ff
e00482a
 
4996681
e00482a
774e240
 
 
 
e00482a
774e240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e00482a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55c9623
e00482a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4996681
 
e00482a
4996681
11255ff
4996681
 
 
11255ff
4996681
 
 
e00482a
 
 
4996681
 
e00482a
 
 
 
 
 
11255ff
 
ece1c42
11255ff
 
ece1c42
11255ff
ece1c42
 
11255ff
 
ece1c42
 
 
 
11255ff
 
 
 
 
 
ece1c42
11255ff
 
 
 
4996681
11255ff
4996681
11255ff
4996681
 
 
11255ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ece1c42
e00482a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11255ff
 
 
55c9623
11255ff
 
 
 
 
 
 
 
 
 
 
 
4996681
 
11255ff
 
 
 
 
 
 
 
 
 
4996681
 
 
11255ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e00482a
 
 
55c9623
11255ff
 
 
 
e00482a
11255ff
 
e00482a
 
 
 
 
4996681
 
e00482a
11255ff
ece1c42
 
11255ff
e00482a
11255ff
 
 
e00482a
11255ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ece1c42
11255ff
 
 
 
 
ece1c42
11255ff
 
 
 
e00482a
 
39c78ba
 
 
 
 
 
11255ff
 
 
e00482a
ece1c42
e00482a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4996681
e00482a
 
 
 
 
 
11255ff
4996681
e00482a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
# main.py - Hugging Face Spaces API: ders_id -> model mapping -> batch inference -> kazanımID
# Requirements (requirements.txt):
# fastapi transformers torch pydantic uvicorn tensorflow
#
# Directory layout within Space repo:
# - main.py  (this file)
# - model_mapping.json
# - kazanim_id_konu_isim_dict_list.py
#
# 📌 Endpoints:
#   POST /predict  {"model_name": "eraydikyologlu/bert_ayt_matematik", "inputs": ["soru1", "soru2", ...]}
#         → {"model": "...", "results": [{"kazanım_id": "2873", "label": "LABEL_0", "score": 0.97}, ...]}

import os
import logging
logger = logging.getLogger("uvicorn")
logger.setLevel(logging.INFO)

# Hugging Face cache'ini writable dizine yönlendir
os.environ["HF_HOME"] = "/tmp/.cache/huggingface"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/.cache/huggingface"
os.environ["HF_HUB_CACHE"] = "/tmp/.cache/huggingface"

os.environ["TRANSFORMERS_VERBOSITY"] = "info"
os.environ["HF_HUB_DISABLE_BIN_TO_SAFETENSORS_CONVERSION"] = "1"
try:
    import tensorflow as tf
    tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
except ImportError:
    pass

from fastapi import FastAPI, HTTPException, UploadFile, File
from pydantic import BaseModel, Field
from typing import List, Dict, Optional
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import torch
import functools
# asyncio, concurrent.futures, threading kaldırıldı - direkt sequential processing
import kazanim_id_konu_isim_dict_list as kazanimlar
import logging
import whisper
import tempfile
import os
import logging
logger = logging.getLogger("uvicorn")
logger.setLevel(logging.INFO)

# Hugging Face cache'ini writable dizine yönlendir
os.environ["HF_HOME"] = "/tmp/.cache/huggingface"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/.cache/huggingface"
os.environ["HF_HUB_CACHE"] = "/tmp/.cache/huggingface"

# Whisper ve diğer cache'ler için
os.environ["XDG_CACHE_HOME"] = "/tmp/.cache"
os.environ["TORCH_HOME"] = "/tmp/.cache/torch"

# Whisper model cache için özel dizin
whisper_cache_dir = "/tmp/.cache/whisper"
os.makedirs(whisper_cache_dir, exist_ok=True)
os.environ["WHISPER_CACHE_DIR"] = whisper_cache_dir

os.environ["TRANSFORMERS_VERBOSITY"] = "info"
os.environ["HF_HUB_DISABLE_BIN_TO_SAFETENSORS_CONVERSION"] = "1"
app = FastAPI(title="Edu-BERT Multi‑Model API")

# Hugging Face Space CPU kullandığı için device -1 (CPU)
device = 0 if torch.cuda.is_available() else -1

print(f"🧠 torch: {torch.__version__}, cuda available: {torch.cuda.is_available()}")

if torch.cuda.is_available():
    print(f"🚀 CUDA device name: {torch.cuda.get_device_name(0)}")
else:
    print("⚠️ CUDA not available, using CPU.")

# ---------- Pydantic Schemas ---------- #
class PredictRequest(BaseModel):
    model_name: str = Field(..., description="Model adı (örn: eraydikyologlu/bert_ayt_matematik)")
    inputs: List[str] = Field(..., description="Soru metinleri listesi")

class WhisperRequest(BaseModel):
    model_name: str = Field(default="small", description="Whisper model adı (tiny, base, small, medium, large)")
    language: str = Field(default="tr", description="Dil")
    batch_size: int = Field(default=8, description="Batch boyutu")

class QuestionResult(BaseModel):
    label: str
    score: float

class VideoResult(BaseModel):
    id: str
    text: str

class PredictResponse(BaseModel):
    model: str
    results: List[QuestionResult]

class WhisperResponse(BaseModel):
    model: str
    results: List[VideoResult]

# ---------- Helpers ---------- #

@functools.lru_cache(maxsize=8)
def load_pipeline(model_name: str):
    """Model pipeline yükleme - minimal approach"""
    try:
        print(f"Model yükleniyor: {model_name}")
        #base_tok = "umutarpayy/tyt_turkce_bert"
        #model_name  = "eraydikyologlu/tyt_turkce_bert_pt"
        # EXACTLY like your working local code - NO extra parameters
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModelForSequenceClassification.from_pretrained(model_name)
        classifier = pipeline("text-classification", model=model, tokenizer=tokenizer, device=device)
        
        print(f"Model başarıyla yüklendi: {model_name}")
        return classifier
        
    except Exception as e:
        print(f"Model yükleme hatası ({model_name}): {e}")
        raise HTTPException(status_code=500, detail=f"Model yükleme hatası: {str(e)}")

@functools.lru_cache(maxsize=4)
def load_whisper_model(model_name: str):
    """openai-whisper model yükleme - ESKİ STABİL VERSİYON"""
    try:
        print(f"openai-whisper modeli yükleniyor: {model_name}")
        
        # CPU/GPU device seçimi
        device = "cuda" if torch.cuda.is_available() else "cpu"
        print(f"Device: {device}")
        
        # openai-whisper modeli yükle
        model = whisper.load_model(model_name, device=device)
        print(f"✅ openai-whisper modeli başarıyla yüklendi: {model_name} on {device}")
        return model
        
    except Exception as e:
        print(f"openai-whisper model yükleme hatası ({model_name}): {e}")
        raise HTTPException(status_code=500, detail=f"openai-whisper model yükleme hatası: {str(e)}")
    
import time, logging, sys
logging.basicConfig(stream=sys.stdout,
                    level=logging.INFO,
                    format="%(asctime)s  %(levelname)s  %(message)s")

# WORKER YOK - Direkt sequential processing
# faster-whisper kullanıyoruz artık

async def prepare_video_file(file: UploadFile) -> tuple[str, str]:
    """Video dosyasını geçici dizine kaydet - Validation ile"""
    if not file.filename.lower().endswith(('.mp4', '.wav', '.mp3', '.m4a', '.flac')):
        return file.filename, ""
    
    # Geçici dosya oluştur
    original_ext = os.path.splitext(file.filename)[1]
    with tempfile.NamedTemporaryFile(delete=False, suffix=original_ext) as temp_file:
        content = await file.read()
        temp_file.write(content)
        temp_file_path = temp_file.name
    
    # FILE VALIDATION: Dosya boyutu kontrolü
    file_size = len(content)
    if file_size < 1000:  # 1KB'den küçükse corrupt
        print(f"❌ {file.filename}: Dosya çok küçük ({file_size} bytes)")
        os.unlink(temp_file_path)
        return file.filename, ""
    
    print(f"✅ {file.filename}: Dosya geçerli ({file_size} bytes)")
    return file.filename, temp_file_path

def process_single_video_sync(file_path: str, filename: str, model, language: str) -> VideoResult:
    """Tek bir video dosyasını işle - DIREKT SEQUENTIAL (worker yok) - ESKİ STABİL VERSİYON"""
    try:
        print(f"🔄 {filename}: openai-whisper ile işleniyor...")
        
        # openai-whisper ile transcription - ESKİ STABİL API
        result = model.transcribe(file_path, language=language)
        text = result['text'].strip()
        
        # Model çıktısının bir kısmını logla (debug için)
        preview = text[:150] + "..." if len(text) > 150 else text
        print(f"📝 {filename}: {preview}")
        
        return VideoResult(id=filename, text=text)
        
    except Exception as e:
        print(f"❌ Video işleme hatası ({filename}): {e}")
        return VideoResult(id=filename, text="")
        
    finally:
        # Geçici dosyayı temizle
        if os.path.exists(file_path):
            try:
                os.unlink(file_path)
            except:
                pass

@app.post("/predict", response_model=PredictResponse)   
async def predict(req: PredictRequest):
    t0 = time.time()
    print(f"new request /model = {req.model_name} / n = {len(req.inputs)}")
    """Ana endpoint - model_name ile inference"""
    try:
        if not req.inputs:
            raise HTTPException(status_code=400, detail="inputs boş olamaz")

        # Pipeline yükle
        classifier = load_pipeline(req.model_name)
        
        # Batch işleme
        outputs = classifier(req.inputs, truncation=True, padding=True, batch_size=8)
        dt = time.time() - t0
        print(f"✅ done | took {dt:.2f}s")
        results = []
        for out in outputs:
            label = out["label"]
            score = float(out["score"])
            
            
            results.append(QuestionResult(
                label=label,
                score=score
            ))
        
        print(f"Tamamlandı: {len(results)} sonuç")
        return PredictResponse(model=req.model_name, results=results)
        
    except Exception as e:
        print(f"Hata: {e}")
        import traceback
        traceback.print_exc()
        raise HTTPException(status_code=500, detail=f"Hata: {str(e)}")

@app.post("/whisper-single", response_model=WhisperResponse)
async def transcribe_single_video(file: UploadFile = File(...), 
                                model_name: str = "small", 
                                language: str = "tr",
                                ustkurumid: Optional[str] = None,
                                testid: Optional[str] = None, 
                                soruno: Optional[str] = None):
    """TEK VİDEO işleme - Bug'sız tek tek processing"""
    t0 = time.time()
    print(f"🎯 TEK VIDEO işleme başlıyor: {file.filename}")
    print(f"📊 Request info: ustkurumid={ustkurumid}, testid={testid}, soruno={soruno}")
    
    try:
        if not file.filename.lower().endswith(('.mp4', '.wav', '.mp3', '.m4a', '.flac')):
            raise HTTPException(status_code=400, detail="Desteklenmeyen dosya formatı")

        # openai-whisper Model yükle
        model = load_whisper_model(model_name)
        
        # Dosyayı hazırla
        print(f"📁 Dosya hazırlanıyor: {file.filename}")
        file_name, file_path = await prepare_video_file(file)
        
        if not file_path:
            return WhisperResponse(model=model_name, results=[VideoResult(id=file_name, text="")])
        
        print(f"🚀 Transcription başlıyor: {file_name}")
        
        # openai-whisper ile TEK VİDEO işleme - ESKİ STABİL VERSİYON
        result = model.transcribe(file_path, language=language)
        text = result['text'].strip()
        
        # Model çıktısının bir kısmını logla
        preview = text[:150] + "..." if len(text) > 150 else text
        print(f"📝 {file_name}: {preview}")
        
        # Geçici dosyayı temizle
        try:
            os.unlink(file_path)
        except:
            pass
        
        dt = time.time() - t0
        print(f"✅ TEK VIDEO tamamlandı | took {dt:.2f}s")
        
        return WhisperResponse(model=model_name, results=[VideoResult(id=file_name, text=text)])
        
    except Exception as e:
        print(f"❌ Tek video hatası: {e}")
        import traceback
        traceback.print_exc()
        raise HTTPException(status_code=500, detail=f"Tek video hatası: {str(e)}")

@app.post("/whisper", response_model=WhisperResponse)   
async def transcribe_videos(files: List[UploadFile] = File(...), 
                          model_name: str = "small", 
                          language: str = "tr",
                          ustkurumid: Optional[str] = None,
                          testid: Optional[str] = None, 
                          soruno: Optional[str] = None):
    """Video dosyalarını metne çevir - TEK TEK İŞLEME (Bug'sız)"""
    t0 = time.time()
    print(f"🎯 TEK TEK whisper request /model = {model_name} / n = {len(files)} - SEQUENTIAL İŞLEME")
    print(f"📊 Batch Request info: ustkurumid={ustkurumid}, testid={testid}, soruno={soruno}")
    
    try:
        if not files:
            raise HTTPException(status_code=400, detail="Video dosyaları boş olamaz")

        # openai-whisper modelini yükle
        model = load_whisper_model(model_name)
        
        # 🎯 TEK TEK SEQUENTIAL İŞLEME - Bug'sız!
        final_results = []
        
        print(f"📝 {len(files)} dosya tek tek sırayla işlenecek (bug'sız)...")
        
        # Her dosyayı sırasıyla tek tek işle
        for i, file in enumerate(files):
            print(f"🔄 Video {i+1}/{len(files)}: {file.filename} işleniyor...")
            
            try:
                # Dosyayı hazırla
                file_name, file_path = await prepare_video_file(file)
                
                if not file_path:
                    final_results.append(VideoResult(id=file_name, text=""))
                    continue
                
                # TEK TEK işleme - DIREKT SEQUENTIAL
                result = process_single_video_sync(file_path, file_name, model, language)
                final_results.append(result)
                
                # Başarı durumunu logla
                if result.text.strip():
                    print(f"✅ {file.filename}: Başarılı!")
                else:
                    print(f"❌ {file.filename}: Boş sonuç!")
                    
            except Exception as e:
                print(f"❌ {file.filename}: İşleme hatası: {e}")
                final_results.append(VideoResult(id=file.filename, text=""))
            
            # Her dosya arasında kısa bekleme (stability için)
            if i < len(files) - 1:
                import asyncio
                await asyncio.sleep(0.5)
        
        dt = time.time() - t0
        
        # Final istatistikler
        total_success = len([r for r in final_results if r.text.strip()])
        total_failed = len(final_results) - total_success
        success_rate = (total_success / len(final_results) * 100) if final_results else 0
        
        print(f"✅ Whisper SEQUENTIAL done | took {dt:.2f}s")
        print(f"🎯 TEK TEK SONUÇ: {len(final_results)} video | ✅{total_success} başarılı | ❌{total_failed} hatalı | 📊{success_rate:.1f}% başarı oranı")
        print(f"⚡ SEQUENTIAL HIZI: {len(final_results)/dt:.1f} video/saniye | Bug'sız stabil!")
        
        return WhisperResponse(model=model_name, results=final_results)
        
    except Exception as e:
        print(f"Whisper Hatası: {e}")
        import traceback
        traceback.print_exc()
        raise HTTPException(status_code=500, detail=f"Whisper Hatası: {str(e)}")

@app.get("/")
def root():
    return {"status": "ok", "message": "Edu-BERT API çalışıyor"}

@app.get("/health")
def health_check():
    """Sağlık kontrolü endpoint'i"""
    try:
        # Hangi donanımda çalıştığımızı belirle
        if device == -1:
            device_info = "CPU"
        else:
            gpu_name = torch.cuda.get_device_name(0)
            device_info = f"GPU: {gpu_name}"

        bert_models = load_pipeline.cache_info().currsize if hasattr(load_pipeline, 'cache_info') else 0
        whisper_models = load_whisper_model.cache_info().currsize if hasattr(load_whisper_model, 'cache_info') else 0
        
        return {
            "status": "healthy", 
            "device": device_info,
            "bert_models_loaded": bert_models,
            "whisper_models_loaded": whisper_models,
            "endpoints": ["/predict", "/whisper", "/whisper-single", "/health"],
            "processing_mode": "SEQUENTIAL - openai-whisper ESKİ STABİL VERSİYON"
        }
    except Exception as e:
        return {"status": "error", "message": f"Sağlık kontrolü hatası: {str(e)}"}

# Local debug (optional)
# if __name__ == "__main__":
#     import uvicorn
#     uvicorn.run("main:app", host="0.0.0.0", port=7860, reload=True)