File size: 1,874 Bytes
a588039
91b0752
72e6803
5cacb61
04901e7
 
5cacb61
04901e7
7a62d53
 
04901e7
 
 
a4d5298
f525ef3
7a62d53
04901e7
 
f525ef3
7a62d53
 
b8ee71c
91b0752
 
 
7a62d53
 
 
 
 
 
 
 
 
 
a588039
72e6803
a588039
7a62d53
 
 
04901e7
 
a588039
04901e7
72e6803
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from datasets import load_dataset

# Load the WikiSQL dataset
wikisql_dataset = load_dataset("wikisql", split='train')  # Load a subset of the dataset

# Extract schema information from the WikiSQL dataset
table_names = set()
column_names = set()
for item in wikisql_dataset:
    table_names.add(item['table']['name'])
    for column in item['table']['header']:
        column_names.add(column)

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")

def generate_sql_from_user_input(query):
    # Generate SQL for the user's query
    input_text = "translate English to SQL: " + query
    inputs = tokenizer(input_text, return_tensors="pt", padding=True)
    outputs = model.generate(**inputs, max_length=512)
    sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)

    # Post-process the SQL query to match the dataset's schema
    for table_name in table_names:
        if "TABLE" in sql_query:
            sql_query = sql_query.replace("TABLE", table_name)
            break  # Assuming only one table is referenced in the query
    for column_name in column_names:
        if "COLUMN" in sql_query:
            sql_query = sql_query.replace("COLUMN", column_name, 1)
    return sql_query

# Create a Gradio interface
interface = gr.Interface(
    fn=generate_sql_from_user_input,
    inputs=gr.Textbox(label="Enter your natural language query"),
    outputs=gr.Textbox(label="Generated SQL Query"),
    title="NL to SQL with T5 using WikiSQL Dataset",
    description="This model generates an SQL query for your natural language input based on the WikiSQL dataset."
)

# Launch the app
if __name__ == "__main__":
    interface.launch()