HusnaManakkot commited on
Commit
a588039
Β·
verified Β·
1 Parent(s): 5665aa8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -5
app.py CHANGED
@@ -1,10 +1,11 @@
 
1
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
2
 
3
  # Load the tokenizer and model
4
  tokenizer = AutoTokenizer.from_pretrained("Salesforce/codet5-base-multi-summarization-sql-en")
5
  model = AutoModelForSeq2SeqLM.from_pretrained("Salesforce/codet5-base-multi-summarization-sql-en")
6
 
7
- def nl_to_sql(natural_language_query):
8
  # Tokenize the input query
9
  input_ids = tokenizer(natural_language_query, return_tensors="pt").input_ids
10
 
@@ -15,7 +16,22 @@ def nl_to_sql(natural_language_query):
15
  sql_query = tokenizer.decode(output_ids, skip_special_tokens=True)
16
  return sql_query
17
 
18
- # Example usage
19
- natural_language_query = "What is the average salary of employees?"
20
- sql_query = nl_to_sql(natural_language_query)
21
- print(f"SQL Query: {sql_query}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
 
4
  # Load the tokenizer and model
5
  tokenizer = AutoTokenizer.from_pretrained("Salesforce/codet5-base-multi-summarization-sql-en")
6
  model = AutoModelForSeq2SeqLM.from_pretrained("Salesforce/codet5-base-multi-summarization-sql-en")
7
 
8
+ def generate_sql(natural_language_query):
9
  # Tokenize the input query
10
  input_ids = tokenizer(natural_language_query, return_tensors="pt").input_ids
11
 
 
16
  sql_query = tokenizer.decode(output_ids, skip_special_tokens=True)
17
  return sql_query
18
 
19
+ # Example questions for the interface
20
+ example_questions = [
21
+ "What is the average salary of employees?",
22
+ "List the names of employees who work in the IT department.",
23
+ "Count the number of employees who joined after 2015."
24
+ ]
25
+
26
+ # Create the Gradio interface
27
+ interface = gr.Interface(
28
+ fn=generate_sql,
29
+ inputs=gr.Textbox(lines=2, placeholder="Enter your natural language query here..."),
30
+ outputs="text",
31
+ examples=example_questions,
32
+ title="NL to SQL with CodeT5",
33
+ description="This model converts natural language queries into SQL using the WikiSQL dataset. Try one of the example questions or enter your own!"
34
+ )
35
+
36
+ # Launch the interface
37
+ interface.launch()