Spaces:
Sleeping
Sleeping
import os | |
import torch | |
from fastapi import FastAPI, HTTPException | |
from fastapi.responses import StreamingResponse, JSONResponse | |
from pydantic import BaseModel, field_validator | |
from transformers import ( | |
AutoConfig, | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
GenerationConfig, | |
StoppingCriteria, | |
StoppingCriteriaList, | |
pipeline | |
) | |
import uvicorn | |
import asyncio | |
import json | |
import base64 | |
from huggingface_hub import login | |
from botocore.exceptions import NoCredentialsError | |
from functools import lru_cache | |
from typing import AsyncGenerator | |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN") | |
if HUGGINGFACE_HUB_TOKEN: | |
login(token=HUGGINGFACE_HUB_TOKEN, | |
add_to_git_credential=False) | |
app = FastAPI() | |
class GenerateRequest(BaseModel): | |
model_name: str | |
input_text: str = "" | |
task_type: str | |
temperature: float = 1.0 | |
max_new_tokens: int = 3 | |
stream: bool = True | |
top_p: float = 1.0 | |
top_k: int = 50 | |
repetition_penalty: float = 1.0 | |
num_return_sequences: int = 1 | |
do_sample: bool = True | |
stop_sequences: list[str] = [] | |
def model_name_cannot_be_empty(cls, v): | |
if not v: | |
raise ValueError("model_name cannot be empty.") | |
return v | |
def task_type_must_be_valid(cls, v): | |
valid_types = ["text-to-text", "text-to-image", | |
"text-to-speech", "text-to-video"] | |
if v not in valid_types: | |
raise ValueError(f"task_type must be one of: {valid_types}") | |
return v | |
model_data = {} # Global dictionary to store model data | |
model_load_lock = asyncio.Lock() # Lock to avoid race conditions | |
async def _load_model_and_tokenizer(model_name): | |
try: | |
config = AutoConfig.from_pretrained( | |
model_name, token=HUGGINGFACE_HUB_TOKEN | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_name, config=config, token=HUGGINGFACE_HUB_TOKEN | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, config=config, token=HUGGINGFACE_HUB_TOKEN | |
) | |
if tokenizer.eos_token_id is not None and \ | |
tokenizer.pad_token_id is None: | |
tokenizer.pad_token_id = config.pad_token_id \ | |
or tokenizer.eos_token_id | |
return {"model":model, "tokenizer":tokenizer} | |
except Exception as e: | |
raise HTTPException( | |
status_code=500, detail=f"Error loading model: {e}" | |
) | |
async def load_model_and_tokenizer(model_name): | |
async with model_load_lock: | |
if model_name in model_data: | |
return model_data[model_name].get("model"), model_data[model_name].get("tokenizer") | |
model_bundle = await _load_model_and_tokenizer(model_name) | |
model_data[model_name] = model_bundle | |
return model_bundle.get("model"), model_bundle.get("tokenizer") | |
async def generate(request: GenerateRequest): | |
try: | |
model_name = request.model_name | |
input_text = request.input_text | |
task_type = request.task_type | |
temperature = request.temperature | |
max_new_tokens = request.max_new_tokens | |
stream = request.stream | |
top_p = request.top_p | |
top_k = request.top_k | |
repetition_penalty = request.repetition_penalty | |
num_return_sequences = request.num_return_sequences | |
do_sample = request.do_sample | |
stop_sequences = request.stop_sequences | |
model, tokenizer = await load_model_and_tokenizer(model_name) | |
device = "cpu" # Force CPU | |
model.to(device) | |
if "text-to-text" == task_type: | |
generation_config = GenerationConfig( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
top_k=top_k, | |
repetition_penalty=repetition_penalty, | |
do_sample=do_sample, | |
num_return_sequences=num_return_sequences, | |
eos_token_id = tokenizer.eos_token_id | |
) | |
if stream: | |
return StreamingResponse( | |
stream_json_responses(stream_text(model, tokenizer, input_text, | |
generation_config, stop_sequences, | |
device)), | |
media_type="text/plain" | |
) | |
else: | |
result = await generate_text(model, tokenizer, input_text, | |
generation_config, stop_sequences, | |
device) | |
return JSONResponse({"text": result, "is_end": True}) | |
else: | |
return HTTPException(status_code=400, detail="Task type not text-to-text") | |
except Exception as e: | |
raise HTTPException( | |
status_code=500, detail=f"Internal server error: {str(e)}" | |
) | |
class StopOnSequences(StoppingCriteria): | |
def __init__(self, stop_sequences, tokenizer): | |
self.stop_sequences = stop_sequences | |
self.tokenizer = tokenizer | |
self.stop_ids = [tokenizer.encode(seq, add_special_tokens=False) for seq in stop_sequences] | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
decoded_text = self.tokenizer.decode(input_ids[0], skip_special_tokens=True) | |
for stop_sequence in self.stop_sequences: | |
if stop_sequence in decoded_text: | |
return True | |
return False | |
async def stream_text(model, tokenizer, input_text, | |
generation_config, stop_sequences, | |
device) -> AsyncGenerator[dict, None]: | |
encoded_input = tokenizer( | |
input_text, return_tensors="pt", | |
truncation=True | |
).to(device) | |
stop_criteria = StopOnSequences(stop_sequences, tokenizer) | |
stopping_criteria = StoppingCriteriaList([stop_criteria]) | |
output_text = "" | |
while True: | |
outputs = await asyncio.to_thread(model.generate, | |
**encoded_input, | |
do_sample=generation_config.do_sample, | |
max_new_tokens=generation_config.max_new_tokens, | |
temperature=generation_config.temperature, | |
top_p=generation_config.top_p, | |
top_k=generation_config.top_k, | |
repetition_penalty=generation_config.repetition_penalty, | |
num_return_sequences=generation_config.num_return_sequences, | |
output_scores=True, | |
return_dict_in_generate=True, | |
stopping_criteria=stopping_criteria | |
) | |
new_text = tokenizer.decode( | |
outputs.sequences[0][len(encoded_input["input_ids"][0]):], | |
skip_special_tokens=True | |
) | |
if not new_text: | |
if not stop_criteria(outputs.sequences, None): | |
yield {"text": output_text, "is_end": False} | |
yield {"text": "", "is_end": True} | |
break | |
output_text += new_text | |
yield {"text": new_text, "is_end": False} | |
if stop_criteria(outputs.sequences, None): | |
yield {"text": "", "is_end": True} | |
break | |
encoded_input = tokenizer( | |
output_text, return_tensors="pt", | |
truncation=True | |
).to(device) | |
output_text = "" | |
async def stream_json_responses(generator: AsyncGenerator[dict, None]) -> AsyncGenerator[str, None]: | |
async for data in generator: | |
yield json.dumps(data) + "\n" | |
async def generate_text(model, tokenizer, input_text, | |
generation_config, stop_sequences, | |
device): | |
encoded_input = tokenizer( | |
input_text, return_tensors="pt", | |
truncation=True | |
).to(device) | |
stop_criteria = StopOnSequences(stop_sequences, tokenizer) | |
stopping_criteria = StoppingCriteriaList([stop_criteria]) | |
outputs = await asyncio.to_thread(model.generate, | |
**encoded_input, | |
do_sample=generation_config.do_sample, | |
max_new_tokens=generation_config.max_new_tokens, | |
temperature=generation_config.temperature, | |
top_p=generation_config.top_p, | |
top_k=generation_config.top_k, | |
repetition_penalty=generation_config.repetition_penalty, | |
num_return_sequences=generation_config.num_return_sequences, | |
output_scores=True, | |
return_dict_in_generate=True, | |
stopping_criteria=stopping_criteria | |
) | |
generated_text = tokenizer.decode( | |
outputs.sequences[0], skip_special_tokens=True | |
) | |
return generated_text | |
async def generate_image(request: GenerateRequest): | |
try: | |
validated_body = request | |
device = "cpu" # Force CPU | |
if validated_body.model_name not in model_data: | |
config = AutoConfig.from_pretrained( | |
validated_body.model_name, token=HUGGINGFACE_HUB_TOKEN | |
) | |
model = pipeline( | |
"text-to-image", model=validated_body.model_name, | |
device=device, config=config | |
) | |
model_data[validated_body.model_name] = {"model":model} | |
else: | |
model = model_data[validated_body.model_name]["model"] | |
image = model(validated_body.input_text)[0] | |
image_data = list(image.getdata()) | |
return JSONResponse({"image_data": image_data, "is_end": True}) | |
except Exception as e: | |
raise HTTPException( | |
status_code=500, | |
detail=f"Internal server error: {str(e)}" | |
) | |
async def generate_text_to_speech(request: GenerateRequest): | |
try: | |
validated_body = request | |
device = "cpu" # Force CPU | |
if validated_body.model_name not in model_data: | |
config = AutoConfig.from_pretrained( | |
validated_body.model_name, token=HUGGINGFACE_HUB_TOKEN | |
) | |
audio_generator = pipeline( | |
"text-to-speech", model=validated_body.model_name, | |
device=device, config=config | |
) | |
model_data[validated_body.model_name] = {"model":audio_generator} | |
else: | |
audio_generator = model_data[validated_body.model_name]["model"] | |
audio = audio_generator(validated_body.input_text) | |
audio_bytes = audio["audio"] | |
audio_base64 = base64.b64encode(audio_bytes).decode('utf-8') | |
return JSONResponse({"audio": audio_base64, "is_end": True}) | |
except Exception as e: | |
raise HTTPException( | |
status_code=500, | |
detail=f"Internal server error: {str(e)}" | |
) | |
async def generate_video(request: GenerateRequest): | |
try: | |
validated_body = request | |
device = "cpu" # Force CPU | |
if validated_body.model_name not in model_data: | |
config = AutoConfig.from_pretrained( | |
validated_body.model_name, token=HUGGINGFACE_HUB_TOKEN | |
) | |
video_generator = pipeline( | |
"text-to-video", model=validated_body.model_name, | |
device=device, config=config | |
) | |
model_data[validated_body.model_name] = {"model":video_generator} | |
else: | |
video_generator = model_data[validated_body.model_name]["model"] | |
video = video_generator(validated_body.input_text) | |
video_base64 = base64.b64encode(video).decode('utf-8') | |
return JSONResponse({"video": video_base64, "is_end": True}) | |
except Exception as e: | |
raise HTTPException( | |
status_code=500, | |
detail=f"Internal server error: {str(e)}" | |
) | |
async def startup_event(): | |
# Load models here | |
print("Loading models...") | |
models_to_load = set() | |
for env_var_key, env_var_value in os.environ.items(): | |
if env_var_key.startswith("MODEL_NAME_"): | |
models_to_load.add(env_var_value) | |
for model_name in models_to_load: | |
try: | |
await load_model_and_tokenizer(model_name) | |
print(f"Model {model_name} loaded") | |
except Exception as e: | |
print(f"Error loading model {model_name}: {e}") | |
print("Models loaded.") | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=7860) |