Spaces:
Sleeping
Sleeping
File size: 13,456 Bytes
7c21718 9de7b93 2e9ad50 7c21718 d05ede6 66c68f4 d05ede6 7c21718 a0b48c5 277e316 66c68f4 e6982de e77c20c 66c68f4 b7effa9 d05ede6 7c21718 e6982de d05ede6 7c21718 d05ede6 31c0598 7c21718 d05ede6 7c21718 d05ede6 7c21718 d05ede6 7c21718 d05ede6 7c21718 d05ede6 7c21718 d05ede6 66c68f4 d05ede6 66c68f4 d05ede6 66c68f4 d05ede6 7c21718 a0b48c5 7c21718 c8741b0 2e9ad50 7c21718 d05ede6 66c68f4 d05ede6 c17efbf d05ede6 2e9ad50 d05ede6 b7effa9 d05ede6 b7effa9 d05ede6 2e9ad50 d05ede6 2e9ad50 c17efbf e77c20c d05ede6 7c21718 d05ede6 2e9ad50 d05ede6 2e9ad50 d05ede6 2e9ad50 d05ede6 2e9ad50 d05ede6 b7effa9 d05ede6 b7effa9 d05ede6 2e9ad50 d05ede6 6de156a d05ede6 6de156a d05ede6 b7effa9 d05ede6 b7effa9 d05ede6 66c68f4 d05ede6 66c68f4 d05ede6 66c68f4 b7effa9 66c68f4 b7effa9 d05ede6 2e9ad50 d05ede6 2e9ad50 d05ede6 7c21718 a0b48c5 7c21718 66c68f4 d05ede6 b7a38a6 d05ede6 e77c20c d05ede6 66c68f4 d05ede6 7c21718 d05ede6 7c21718 a0b48c5 7c21718 66c68f4 d05ede6 6e229a7 d05ede6 e77c20c d05ede6 e77c20c d05ede6 66c68f4 d05ede6 7c21718 d05ede6 7c21718 a0b48c5 7c21718 66c68f4 d05ede6 6e229a7 d05ede6 e77c20c d05ede6 66c68f4 d05ede6 7c21718 d05ede6 66c68f4 7c21718 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
import os
import torch
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse, JSONResponse
from pydantic import BaseModel, field_validator
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
GenerationConfig,
StoppingCriteria,
StoppingCriteriaList,
pipeline
)
import uvicorn
import asyncio
import json
import base64
from huggingface_hub import login
from botocore.exceptions import NoCredentialsError
from functools import lru_cache
from typing import AsyncGenerator
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
if HUGGINGFACE_HUB_TOKEN:
login(token=HUGGINGFACE_HUB_TOKEN,
add_to_git_credential=False)
app = FastAPI()
class GenerateRequest(BaseModel):
model_name: str
input_text: str = ""
task_type: str
temperature: float = 1.0
max_new_tokens: int = 3
stream: bool = True
top_p: float = 1.0
top_k: int = 50
repetition_penalty: float = 1.0
num_return_sequences: int = 1
do_sample: bool = True
stop_sequences: list[str] = []
@field_validator("model_name")
def model_name_cannot_be_empty(cls, v):
if not v:
raise ValueError("model_name cannot be empty.")
return v
@field_validator("task_type")
def task_type_must_be_valid(cls, v):
valid_types = ["text-to-text", "text-to-image",
"text-to-speech", "text-to-video"]
if v not in valid_types:
raise ValueError(f"task_type must be one of: {valid_types}")
return v
model_data = {} # Global dictionary to store model data
model_load_lock = asyncio.Lock() # Lock to avoid race conditions
@lru_cache(maxsize=None)
async def _load_model_and_tokenizer(model_name):
try:
config = AutoConfig.from_pretrained(
model_name, token=HUGGINGFACE_HUB_TOKEN
)
tokenizer = AutoTokenizer.from_pretrained(
model_name, config=config, token=HUGGINGFACE_HUB_TOKEN
)
model = AutoModelForCausalLM.from_pretrained(
model_name, config=config, token=HUGGINGFACE_HUB_TOKEN
)
if tokenizer.eos_token_id is not None and \
tokenizer.pad_token_id is None:
tokenizer.pad_token_id = config.pad_token_id \
or tokenizer.eos_token_id
return {"model":model, "tokenizer":tokenizer}
except Exception as e:
raise HTTPException(
status_code=500, detail=f"Error loading model: {e}"
)
async def load_model_and_tokenizer(model_name):
async with model_load_lock:
if model_name in model_data:
return model_data[model_name].get("model"), model_data[model_name].get("tokenizer")
model_bundle = await _load_model_and_tokenizer(model_name)
model_data[model_name] = model_bundle
return model_bundle.get("model"), model_bundle.get("tokenizer")
@app.post("/generate")
async def generate(request: GenerateRequest):
try:
model_name = request.model_name
input_text = request.input_text
task_type = request.task_type
temperature = request.temperature
max_new_tokens = request.max_new_tokens
stream = request.stream
top_p = request.top_p
top_k = request.top_k
repetition_penalty = request.repetition_penalty
num_return_sequences = request.num_return_sequences
do_sample = request.do_sample
stop_sequences = request.stop_sequences
model, tokenizer = await load_model_and_tokenizer(model_name)
device = "cpu" # Force CPU
model.to(device)
if "text-to-text" == task_type:
generation_config = GenerationConfig(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
do_sample=do_sample,
num_return_sequences=num_return_sequences,
eos_token_id = tokenizer.eos_token_id
)
if stream:
return StreamingResponse(
stream_json_responses(stream_text(model, tokenizer, input_text,
generation_config, stop_sequences,
device)),
media_type="text/plain"
)
else:
result = await generate_text(model, tokenizer, input_text,
generation_config, stop_sequences,
device)
return JSONResponse({"text": result, "is_end": True})
else:
return HTTPException(status_code=400, detail="Task type not text-to-text")
except Exception as e:
raise HTTPException(
status_code=500, detail=f"Internal server error: {str(e)}"
)
class StopOnSequences(StoppingCriteria):
def __init__(self, stop_sequences, tokenizer):
self.stop_sequences = stop_sequences
self.tokenizer = tokenizer
self.stop_ids = [tokenizer.encode(seq, add_special_tokens=False) for seq in stop_sequences]
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
decoded_text = self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
for stop_sequence in self.stop_sequences:
if stop_sequence in decoded_text:
return True
return False
async def stream_text(model, tokenizer, input_text,
generation_config, stop_sequences,
device) -> AsyncGenerator[dict, None]:
encoded_input = tokenizer(
input_text, return_tensors="pt",
truncation=True
).to(device)
stop_criteria = StopOnSequences(stop_sequences, tokenizer)
stopping_criteria = StoppingCriteriaList([stop_criteria])
output_text = ""
while True:
outputs = await asyncio.to_thread(model.generate,
**encoded_input,
do_sample=generation_config.do_sample,
max_new_tokens=generation_config.max_new_tokens,
temperature=generation_config.temperature,
top_p=generation_config.top_p,
top_k=generation_config.top_k,
repetition_penalty=generation_config.repetition_penalty,
num_return_sequences=generation_config.num_return_sequences,
output_scores=True,
return_dict_in_generate=True,
stopping_criteria=stopping_criteria
)
new_text = tokenizer.decode(
outputs.sequences[0][len(encoded_input["input_ids"][0]):],
skip_special_tokens=True
)
if not new_text:
if not stop_criteria(outputs.sequences, None):
yield {"text": output_text, "is_end": False}
yield {"text": "", "is_end": True}
break
output_text += new_text
yield {"text": new_text, "is_end": False}
if stop_criteria(outputs.sequences, None):
yield {"text": "", "is_end": True}
break
encoded_input = tokenizer(
output_text, return_tensors="pt",
truncation=True
).to(device)
output_text = ""
async def stream_json_responses(generator: AsyncGenerator[dict, None]) -> AsyncGenerator[str, None]:
async for data in generator:
yield json.dumps(data) + "\n"
async def generate_text(model, tokenizer, input_text,
generation_config, stop_sequences,
device):
encoded_input = tokenizer(
input_text, return_tensors="pt",
truncation=True
).to(device)
stop_criteria = StopOnSequences(stop_sequences, tokenizer)
stopping_criteria = StoppingCriteriaList([stop_criteria])
outputs = await asyncio.to_thread(model.generate,
**encoded_input,
do_sample=generation_config.do_sample,
max_new_tokens=generation_config.max_new_tokens,
temperature=generation_config.temperature,
top_p=generation_config.top_p,
top_k=generation_config.top_k,
repetition_penalty=generation_config.repetition_penalty,
num_return_sequences=generation_config.num_return_sequences,
output_scores=True,
return_dict_in_generate=True,
stopping_criteria=stopping_criteria
)
generated_text = tokenizer.decode(
outputs.sequences[0], skip_special_tokens=True
)
return generated_text
@app.post("/generate-image")
async def generate_image(request: GenerateRequest):
try:
validated_body = request
device = "cpu" # Force CPU
if validated_body.model_name not in model_data:
config = AutoConfig.from_pretrained(
validated_body.model_name, token=HUGGINGFACE_HUB_TOKEN
)
model = pipeline(
"text-to-image", model=validated_body.model_name,
device=device, config=config
)
model_data[validated_body.model_name] = {"model":model}
else:
model = model_data[validated_body.model_name]["model"]
image = model(validated_body.input_text)[0]
image_data = list(image.getdata())
return JSONResponse({"image_data": image_data, "is_end": True})
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Internal server error: {str(e)}"
)
@app.post("/generate-text-to-speech")
async def generate_text_to_speech(request: GenerateRequest):
try:
validated_body = request
device = "cpu" # Force CPU
if validated_body.model_name not in model_data:
config = AutoConfig.from_pretrained(
validated_body.model_name, token=HUGGINGFACE_HUB_TOKEN
)
audio_generator = pipeline(
"text-to-speech", model=validated_body.model_name,
device=device, config=config
)
model_data[validated_body.model_name] = {"model":audio_generator}
else:
audio_generator = model_data[validated_body.model_name]["model"]
audio = audio_generator(validated_body.input_text)
audio_bytes = audio["audio"]
audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
return JSONResponse({"audio": audio_base64, "is_end": True})
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Internal server error: {str(e)}"
)
@app.post("/generate-video")
async def generate_video(request: GenerateRequest):
try:
validated_body = request
device = "cpu" # Force CPU
if validated_body.model_name not in model_data:
config = AutoConfig.from_pretrained(
validated_body.model_name, token=HUGGINGFACE_HUB_TOKEN
)
video_generator = pipeline(
"text-to-video", model=validated_body.model_name,
device=device, config=config
)
model_data[validated_body.model_name] = {"model":video_generator}
else:
video_generator = model_data[validated_body.model_name]["model"]
video = video_generator(validated_body.input_text)
video_base64 = base64.b64encode(video).decode('utf-8')
return JSONResponse({"video": video_base64, "is_end": True})
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Internal server error: {str(e)}"
)
@app.on_event("startup")
async def startup_event():
# Load models here
print("Loading models...")
models_to_load = set()
for env_var_key, env_var_value in os.environ.items():
if env_var_key.startswith("MODEL_NAME_"):
models_to_load.add(env_var_value)
for model_name in models_to_load:
try:
await load_model_and_tokenizer(model_name)
print(f"Model {model_name} loaded")
except Exception as e:
print(f"Error loading model {model_name}: {e}")
print("Models loaded.")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860) |