|
import gradio as gr |
|
from pyvis.network import Network |
|
import networkx as nx |
|
import numpy as np |
|
import pandas as pd |
|
import os |
|
from datasets import load_dataset |
|
from datasets import Features |
|
from datasets import Value |
|
from datasets import Dataset |
|
import matplotlib.pyplot as plt |
|
import re |
|
from collections import defaultdict |
|
from huggingface_hub import hf_hub_download |
|
import json |
|
|
|
|
|
|
|
pattern = r'"(.*?)"' |
|
|
|
|
|
Secret_token = os.getenv('HF_token') |
|
|
|
dataset = load_dataset('FDSRashid/hadith_info',data_files = 'Basic_Edge_Information.csv', token = Secret_token, split = 'train') |
|
|
|
edge_info = dataset.to_pandas() |
|
|
|
features = Features({'Rawi ID': Value('int32'), 'Famous Name': Value('string'), 'Narrator Rank': Value('string'), 'Number of Narrations': Value('string'), 'Generation': Value('string')}) |
|
narrator_bios = load_dataset("FDSRashid/hadith_info", data_files = 'Teacher_Bios.csv', token = Secret_token,features=features ) |
|
narrator_bios = narrator_bios['train'].to_pandas() |
|
narrator_bios.loc[49845, 'Narrator Rank'] = 'ุฑุณูู ุงููู' |
|
narrator_bios.loc[49845, 'Number of Narrations'] = 0 |
|
narrator_bios['Number of Narrations'] = narrator_bios['Number of Narrations'].astype(int) |
|
narrator_bios.loc[49845, 'Number of Narrations'] = 327512 |
|
|
|
narrator_bios['Generation'] = narrator_bios['Generation'].replace([None], [-1]) |
|
narrator_bios['Generation'] = narrator_bios['Generation'].astype(int) |
|
|
|
features = Features({'matn': Value('string'), 'taraf_ID': Value('string'), 'bookid_hadithid': Value('string')}) |
|
|
|
dataset = load_dataset("FDSRashid/hadith_info", data_files = 'All_Matns.csv',token = Secret_token, features = features) |
|
matn_info = dataset['train'].to_pandas() |
|
matn_info = matn_info.drop(97550) |
|
matn_info = matn_info.drop(307206) |
|
matn_info['taraf_ID'] = matn_info['taraf_ID'].replace('KeyAbsent', -1) |
|
|
|
matn_info['taraf_ID'] = matn_info['taraf_ID'].astype(int) |
|
|
|
|
|
isnad_info = load_dataset('FDSRashid/hadith_info',token = Secret_token, data_files = 'isnad_info.csv', split = 'train').to_pandas() |
|
isnad_info['Hadiths Cleaned'] = isnad_info['Hadiths'].apply(lambda x: [re.findall(pattern, string)[0].split("_") for string in x[1:-1].split(',')]) |
|
|
|
taraf_max = np.max(matn_info['taraf_ID'].unique()) |
|
isnad_info['Tarafs Cleaned'] = isnad_info['Tarafs'].apply(lambda x: np.array([int(i.strip(' ')) for i in x[1:-1].split(',')])) |
|
|
|
cmap = plt.colormaps['cool'] |
|
|
|
books = load_dataset('FDSRashid/Hadith_info', data_files='Books.csv', token = Secret_token)['train'].to_pandas() |
|
|
|
matn_info['Book_ID'] = matn_info['bookid_hadithid'].apply(lambda x: int(x.split('_')[0])) |
|
matn_info['Hadith Number'] = matn_info['bookid_hadithid'].apply(lambda x: int(x.split('_')[1])) |
|
matn_info = pd.merge(matn_info, books, on='Book_ID') |
|
|
|
narrator_info = narrator_bios.set_index('Rawi ID').to_dict(orient='index') |
|
|
|
|
|
file_path = hf_hub_download( |
|
repo_id="FDSRashid/hadith_info", |
|
filename="hadith_lookup.json", |
|
repo_type="dataset", |
|
token=Secret_token, |
|
) |
|
|
|
with open(file_path, 'r') as f: |
|
hadith_lookup_dict = json.load(f) |
|
HADITH_LOOKUP = defaultdict(list, hadith_lookup_dict) |
|
|
|
|
|
def value_to_hex(value): |
|
rgba_color = cmap(value) |
|
return "#{:02X}{:02X}{:02X}".format(int(rgba_color[0] * 255), int(rgba_color[1] * 255), int(rgba_color[2] * 255)) |
|
|
|
|
|
def get_node_info(node): |
|
node = int(node) |
|
info = narrator_info.get(node, {}) |
|
student_narrations = info.get('Number of Narrations', 1) |
|
student_gen = info.get('Generation', -1) |
|
student_rank = info.get('Narrator Rank', 'ููุงู') |
|
node_name = info.get('Famous Name', 'ููุงู') |
|
return info, student_narrations, student_gen, student_rank, node_name |
|
|
|
def lookup_hadith(taraf_hadith, hadith_lookup): |
|
""" |
|
Returns a list of unique elements from the hadith_lookup for the given taraf_hadith. |
|
|
|
Parameters: |
|
taraf_hadith (str or list of str): A string or list of strings to look up. |
|
hadith_lookup (defaultdict): A defaultdict containing the hadith data. |
|
|
|
Returns: |
|
list: A list of the unique indices for isnad_info. so which edges for that matn |
|
""" |
|
|
|
if isinstance(taraf_hadith, str): |
|
taraf_hadith = [taraf_hadith] |
|
|
|
|
|
unique_elements = {elem for key in taraf_hadith for elem in hadith_lookup[key]} |
|
|
|
|
|
return list(unique_elements) |
|
|
|
|
|
def visualize_isnad(taraf_num, yaxis): |
|
|
|
taraf = matn_info[matn_info['taraf_ID'] == taraf_num] |
|
taraf_hadith = taraf['bookid_hadithid'].to_list() |
|
|
|
|
|
|
|
hadith_cleaned = isnad_info['Tarafs Cleaned'].apply(lambda x: taraf_num in x) |
|
isnad_hadith = isnad_info[hadith_cleaned] |
|
|
|
lst_hadith = [] |
|
|
|
for i, hadith_parts in enumerate(taraf_hadith): |
|
|
|
isnad_hadith1 = isnad_info.iloc[lookup_hadith(taraf_hadith[i], HADITH_LOOKUP)][['Source', 'Destination']] |
|
|
|
|
|
G = nx.from_pandas_edgelist(isnad_hadith1, source='Source', target='Destination', create_using=nx.DiGraph()) |
|
nodes = [int(n) for n, d in G.out_degree() if d == 0] |
|
|
|
if nodes: |
|
|
|
bio_data = narrator_bios[narrator_bios['Rawi ID'].isin(nodes)] |
|
|
|
for n in nodes: |
|
gen_node = bio_data.loc[bio_data['Rawi ID'] == n, 'Generation'].squeeze() |
|
gen_node = gen_node if pd.notna(gen_node) else -1 |
|
|
|
name_node = bio_data.loc[bio_data['Rawi ID'] == n, 'Famous Name'].squeeze() |
|
name_node = name_node if pd.notna(name_node) else 'ููุงู' |
|
|
|
|
|
lst_hadith.append([ |
|
taraf.iloc[i]['matn'], |
|
gen_node, |
|
name_node, |
|
taraf.iloc[i]['Book_Name'], |
|
taraf.iloc[i]['Author'], |
|
taraf.iloc[i]['Hadith Number'], |
|
n, |
|
i |
|
]) |
|
|
|
|
|
df = pd.DataFrame(lst_hadith, columns=['Matn', 'Generation', 'Name', 'Book_Name', 'Author', 'Book Hadith Number', 'End Transmitter ID', 'Hadith Number']) |
|
isnad_hadith[['Source', 'Destination']] = isnad_hadith[['Source', 'Destination']].astype(int) |
|
|
|
|
|
|
|
isnad_hadith = isnad_hadith.merge(narrator_bios[['Rawi ID', 'Famous Name']], left_on='Source', right_on='Rawi ID', how='left').rename(columns={'Famous Name': 'Teacher'}) |
|
isnad_hadith = isnad_hadith.merge(narrator_bios[['Rawi ID', 'Famous Name']], left_on='Destination', right_on='Rawi ID', how='left').rename(columns={'Famous Name': 'Student'}) |
|
isnad_hadith[['Source', 'Destination']] = isnad_hadith[['Source', 'Destination']].astype(str) |
|
|
|
|
|
|
|
|
|
end_nodes = df['End Transmitter ID'].tolist() |
|
G = nx.from_pandas_edgelist(isnad_hadith, source = 'Source', target = 'Destination', create_using = nx.DiGraph()) |
|
isnad_pos = nx.nx_agraph.graphviz_layout(G, prog='dot') |
|
x_stretch = 4 |
|
y_stretch = 4 |
|
net = Network(directed =True, select_menu=True, cdn_resources='remote') |
|
|
|
|
|
end_node_data = df.groupby('End Transmitter ID').apply(lambda x: " ".join(x["Hadith Number"].astype("string"))).to_dict() |
|
|
|
|
|
for node, pos in isnad_pos.items(): |
|
node_info, student_narrations, student_gen, student_rank, node_name = get_node_info(node) |
|
label = f'{node_name} \n {student_rank} \n ID: {node} - Gen {student_gen}' |
|
size = 50 |
|
font_color = 'red' |
|
if node == '99999': |
|
label = f'{node_name} \n ID: {node} - Gen {student_gen}' |
|
size = 70 |
|
font_color = 'black' |
|
elif int(node) in end_nodes: |
|
hadith_numbers = end_node_data.get(int(node), '') |
|
label += f' \n Hadith {hadith_numbers}' |
|
net.add_node(node, font={'size': 30, 'color': font_color}, color=value_to_hex(student_narrations), label=label, x=pos[0] * x_stretch, y=-pos[1] * y_stretch, size=size) |
|
|
|
|
|
edge_data = isnad_hadith[['Source', 'Destination', f'{yaxis} Count']].values |
|
for source, target, count in edge_data: |
|
net.add_edge(source, target, color=value_to_hex(int(count)), label=f"{count}") |
|
|
|
net.toggle_physics(False) |
|
html = net.generate_html() |
|
html = html.replace("'", "\"") |
|
df = df.rename(columns = {'Generation': 'Gen.', 'Book Hadith Number': 'Hdth Num', 'End Transmitter ID': 'End Narrator ID', 'Hadith Number': 'Index', 'Book_Name': 'Book', 'Name':'Final Narrator'}) |
|
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera; |
|
display-capture; encrypted-media;" sandbox="allow-modals allow-forms |
|
allow-scripts allow-same-origin allow-popups |
|
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" |
|
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>""" , df.drop('Hdth Num', axis=1) |
|
|
|
|
|
def visualize_subTaraf(taraf_num, hadith_str, yaxis): |
|
hadith_list = hadith_str.split(',') |
|
hadith_list = [hadith.strip() for hadith in hadith_list] |
|
hadiths = np.array([], dtype=int) |
|
for hadith in hadith_list: |
|
if '-' in hadith: |
|
if hadith.count('-') > 1: |
|
|
|
raise gr.Error('Please use only one Dash mark!') |
|
hadith_multi = hadith.strip().split('-') |
|
if any([not had.isnumeric() for had in hadith_multi]): |
|
|
|
raise gr.Error('Invalid Begining') |
|
elif len(hadith_multi) != 2: |
|
|
|
raise gr.Error('Two numbers for a range of Hadith numbers please!') |
|
hadith_multi = [int(had) for had in hadith_multi] |
|
hadiths = np.append(hadiths, np.arange(hadith_multi[0], hadith_multi[1] +1)) |
|
elif hadith.isnumeric(): |
|
hadiths = np.append(hadiths, int(hadith)) |
|
else: |
|
|
|
raise gr.Error("Invalid Data format!") |
|
|
|
hadiths= np.unique(hadiths) |
|
taraf = matn_info[matn_info['taraf_ID'] == taraf_num] |
|
num_hadith = taraf.shape[0] |
|
if np.max(hadiths) > num_hadith: |
|
raise gr.Error(f'Hadith index outside of range. Total Number of Hadith in this Taraf: {num_hadith}') |
|
taraf['Index'] = np.arange(num_hadith) |
|
sub_taraf = taraf[taraf['Index'].isin(hadiths)] |
|
|
|
isnad_hadith = isnad_info.iloc[lookup_hadith(sub_taraf['bookid_hadithid'].to_list(), HADITH_LOOKUP)] |
|
isnad_hadith[['Source', 'Destination']] = isnad_hadith[['Source', 'Destination']].astype(int) |
|
|
|
|
|
isnad_hadith = isnad_hadith.merge(narrator_bios[['Rawi ID', 'Famous Name']], left_on='Source', right_on='Rawi ID', how='left').rename(columns={'Famous Name': 'Teacher'}) |
|
isnad_hadith = isnad_hadith.merge(narrator_bios[['Rawi ID', 'Famous Name']], left_on='Destination', right_on='Rawi ID', how='left').rename(columns={'Famous Name': 'Student'}) |
|
isnad_hadith[['Source', 'Destination']] = isnad_hadith[['Source', 'Destination']].astype(str) |
|
|
|
|
|
|
|
G = nx.from_pandas_edgelist(isnad_hadith, source = 'Source', target = 'Destination', create_using = nx.DiGraph()) |
|
isnad_pos = nx.nx_agraph.graphviz_layout(G, prog='dot') |
|
x_stretch = 4 |
|
y_stretch = 4 |
|
net = Network(directed =True, select_menu=True, cdn_resources='remote') |
|
|
|
for node, pos in isnad_pos.items(): |
|
node_info,student_narrations,student_gen, student_rank, node_name = get_node_info(node) |
|
if node == '99999': |
|
net.add_node(node, font = {'size':50, 'color': 'black'}, color = '#000000', label = f'{node_name} \n ID: {node} - Gen {student_gen}', x= pos[0]*x_stretch, y= -1*pos[1]*y_stretch, size= 70) |
|
else: |
|
net.add_node(node, font = {'size':30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{node_name} \n {student_rank} \n ID: {node} - Gen {student_gen}', x= pos[0]*x_stretch, y= -1*pos[1]*y_stretch, size= 50) |
|
for _, row in isnad_hadith.iterrows(): |
|
source = row['Source'] |
|
target = row['Destination'] |
|
net.add_edge(source, target, color = value_to_hex(int(row[f'{yaxis} Count'])), label = f"{row[f'{yaxis} Count']}") |
|
net.toggle_physics(False) |
|
html = net.generate_html() |
|
html = html.replace("'", "\"") |
|
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera; |
|
display-capture; encrypted-media;" sandbox="allow-modals allow-forms |
|
allow-scripts allow-same-origin allow-popups |
|
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" |
|
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>""", sub_taraf[['matn', 'Book_Name', 'Author', 'Book_ID', 'Hadith Number']] |
|
|
|
def taraf_booknum(taraf_num): |
|
taraf = matn_info[matn_info['taraf_ID'] == taraf_num] |
|
num_hadith = taraf.shape[0] |
|
taraf['Index'] = np.arange(num_hadith) |
|
return taraf[['matn', 'Book_ID', 'Hadith Number', 'Book_Name', 'Author', 'Index']] |
|
|
|
def visualize_hadith_isnad(df, yaxis): |
|
df['bookid_hadithid'] = df['Book_ID'].astype(str) + '_' + df['Hadith Number'].astype(str) |
|
hadith = matn_info[matn_info['bookid_hadithid'].isin(df['bookid_hadithid'])] |
|
taraf_hadith = df['bookid_hadithid'].to_list() |
|
isnad_hadith = isnad_info.iloc[lookup_hadith(taraf_hadith, HADITH_LOOKUP)] |
|
isnad_hadith[['Source', 'Destination']] = isnad_hadith[['Source', 'Destination']].astype(int) |
|
|
|
|
|
isnad_hadith = isnad_hadith.merge(narrator_bios[['Rawi ID', 'Famous Name']], left_on='Source', right_on='Rawi ID', how='left').rename(columns={'Famous Name': 'Teacher'}) |
|
isnad_hadith = isnad_hadith.merge(narrator_bios[['Rawi ID', 'Famous Name']], left_on='Destination', right_on='Rawi ID', how='left').rename(columns={'Famous Name': 'Student'}) |
|
isnad_hadith[['Source', 'Destination']] = isnad_hadith[['Source', 'Destination']].astype(str) |
|
|
|
|
|
|
|
G = nx.from_pandas_edgelist(isnad_hadith, source = 'Source', target = 'Destination', create_using = nx.DiGraph()) |
|
isnad_pos = nx.nx_agraph.graphviz_layout(G, prog='dot') |
|
x_stretch = 4 |
|
y_stretch = 4 |
|
net = Network(directed =True, select_menu=True, cdn_resources='remote') |
|
|
|
for node, pos in isnad_pos.items(): |
|
node_info,student_narrations,student_gen, student_rank, node_name = get_node_info(node) |
|
if node == '99999': |
|
net.add_node(node, font = {'size':50, 'color': 'black'}, color = '#000000', label = f'{node_name} \n ID: {node} - Gen {student_gen}', x= pos[0]*x_stretch, y= -1*pos[1]*y_stretch, size= 70) |
|
else: |
|
net.add_node(node, font = {'size':30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{node_name} \n {student_rank} \n ID: {node} - Gen {student_gen}', x= pos[0]*x_stretch, y= -1*pos[1]*y_stretch, size= 50) |
|
for _, row in isnad_hadith.iterrows(): |
|
source = row['Source'] |
|
target = row['Destination'] |
|
net.add_edge(source, target, color = value_to_hex(int(row[f'{yaxis} Count'])), label = f"{row[f'{yaxis} Count']}") |
|
net.toggle_physics(False) |
|
html = net.generate_html() |
|
html = html.replace("'", "\"") |
|
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera; |
|
display-capture; encrypted-media;" sandbox="allow-modals allow-forms |
|
allow-scripts allow-same-origin allow-popups |
|
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" |
|
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>""" , hadith[['matn', 'Book_ID', 'Hadith Number', 'Book_Name', 'Author', 'taraf_ID']] |
|
|
|
|
|
def visualize_narrator_taraf(taraf_num, narrator, yaxis): |
|
taraf = matn_info[matn_info['taraf_ID'] == taraf_num].copy() |
|
taraf['Index'] = np.arange(len(taraf)) |
|
hadith_cleaned = isnad_info['Tarafs Cleaned'].apply(lambda x: taraf_num in x) |
|
isnad_hadith = isnad_info[hadith_cleaned] |
|
isnad_hadith[['Source', 'Destination']] = isnad_hadith[['Source', 'Destination']].astype(int) |
|
|
|
isnad_hadith = isnad_hadith.merge(narrator_bios[['Rawi ID', 'Famous Name']], left_on='Source', right_on='Rawi ID', how='left').rename(columns={'Famous Name': 'Teacher'}) |
|
isnad_hadith = isnad_hadith.merge(narrator_bios[['Rawi ID', 'Famous Name']], left_on='Destination', right_on='Rawi ID', how='left').rename(columns={'Famous Name': 'Student'}) |
|
isnad_hadith[['Source', 'Destination']] = isnad_hadith[['Source', 'Destination']].astype(str) |
|
taraf_hadith = taraf['bookid_hadithid'].to_list() |
|
|
|
|
|
G = nx.from_pandas_edgelist(isnad_hadith, source = 'Source', target = 'Destination', create_using = nx.DiGraph()) |
|
if narrator not in G.nodes(): |
|
raise gr.Error('Narrator not in Isnad of Taraf!') |
|
|
|
matns_with_narrator = [] |
|
end_node = {} |
|
|
|
|
|
for idx, split_hadith in enumerate(taraf_hadith): |
|
isnad_hadith1 = isnad_info.iloc[lookup_hadith(taraf_hadith[idx], HADITH_LOOKUP)] |
|
G1 = nx.from_pandas_edgelist(isnad_hadith1, source='Source', target='Destination', create_using=nx.DiGraph()) |
|
if narrator in G1.nodes: |
|
matns_with_narrator.append(taraf_hadith[idx]) |
|
for node in (n for n, d in G1.out_degree() if d == 0): |
|
end_node.setdefault(node, []).append(str(idx)) |
|
|
|
isnad_hadith = isnad_info.iloc[lookup_hadith(matns_with_narrator, HADITH_LOOKUP)] |
|
G = nx.from_pandas_edgelist(isnad_hadith, source = 'Source', target = 'Destination', create_using = nx.DiGraph()) |
|
isnad_pos = nx.nx_agraph.graphviz_layout(G, prog='dot') |
|
|
|
narrator_matn_info = taraf[taraf['bookid_hadithid'].isin(matns_with_narrator)] |
|
narrator_matn_info['Subset Index'] = np.arange(len(narrator_matn_info)) |
|
|
|
|
|
x_stretch = 4 |
|
y_stretch = 4 |
|
net = Network(directed =True, select_menu=True, cdn_resources='remote') |
|
|
|
for node, pos in isnad_pos.items(): |
|
node_info, student_narrations, student_gen, student_rank, node_name = get_node_info(node) |
|
label = f'{node_name} \n ID: {node} - Gen {student_gen}' |
|
size = 70 if node == '99999' else 50 |
|
font_color = 'black' if node == '99999' else 'red' |
|
hadiths = f" \n Hadiths {', '.join(end_node[node])}" if node in end_node else '' |
|
net.add_node(node, font={'size': 30, 'color': font_color}, color=value_to_hex(student_narrations), |
|
label=f"{label} {hadiths}", x=pos[0] * x_stretch, y=-pos[1] * y_stretch, size=size) |
|
|
|
for edge in G.edges: |
|
row = isnad_hadith[(isnad_hadith['Source'] == edge[0]) & (isnad_hadith['Destination'] == edge[1])].iloc[0] |
|
net.add_edge(edge[0], edge[1], color=value_to_hex(int(row[f'{yaxis} Count'])), label=f"{row[f'{yaxis} Count']}") |
|
|
|
net.toggle_physics(False) |
|
html = net.generate_html() |
|
html = html.replace("'", "\"") |
|
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera; |
|
display-capture; encrypted-media;" sandbox="allow-modals allow-forms |
|
allow-scripts allow-same-origin allow-popups |
|
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" |
|
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>""" , narrator_matn_info[['matn', 'Book_Name', 'Author', 'Book_ID', 'Hadith Number', 'Index', 'Subset Index']] |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Tab("Whole Taraf Visualizer"): |
|
Yaxis = gr.Dropdown(choices = ['Taraf', 'Hadith', 'Isnad', 'Book'], value = 'Taraf', label = 'Variable to Display', info = 'Choose the variable to visualize.') |
|
taraf_number = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1) |
|
btn = gr.Button('Submit') |
|
|
|
btn.click(fn = visualize_isnad, inputs = [taraf_number, Yaxis], outputs = [gr.HTML(), gr.DataFrame(wrap=True, column_widths=[43, 8, 11,11,10,8, 9])]) |
|
with gr.Tab("Book and Hadith Number Retriever"): |
|
taraf_num = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1) |
|
btn_num = gr.Button('Retrieve') |
|
btn_num.click(fn=taraf_booknum, inputs = [taraf_num], outputs= [gr.DataFrame(wrap=True)]) |
|
with gr.Tab('Sub Taraf Visualizer'): |
|
taraf_num = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1) |
|
Yaxis = gr.Dropdown(choices = ['Taraf', 'Hadith', 'Isnad', 'Book'], value = 'Taraf', label = 'Variable to Display', info = 'Choose the variable to visualize.') |
|
hadith_str = gr.Textbox(label='Hadith Selection', info='Choose which range of Hadith you would like visualized from the Taraf (eg "1, 2, 4-7")') |
|
btn_sub = gr.Button('Visualize') |
|
btn_sub.click(fn=visualize_subTaraf, inputs = [taraf_num, hadith_str, Yaxis], outputs=[gr.HTML(), gr.DataFrame(wrap=True)]) |
|
with gr.Tab('Select Hadith Isnad Visualizer'): |
|
yyaxis = gr.Dropdown(choices = ['Taraf', 'Hadith', 'Isnad', 'Book'], value = 'Taraf', label = 'Variable to Display', info = 'Choose the variable to visualize.') |
|
hadith_selection = gr.Dataframe( |
|
headers=["Book_ID", "Hadith Number"], |
|
datatype=["number", "number"], |
|
row_count=5, |
|
col_count=(2, "fixed")) |
|
btn_hadith = gr.Button('Visualize') |
|
btn_hadith.click(fn=visualize_hadith_isnad, inputs=[hadith_selection, yyaxis], outputs=[gr.HTML(), gr.DataFrame(wrap=True)]) |
|
with gr.Tab('Taraf Narrator Isnad Visualizer'): |
|
Yaxis = gr.Dropdown(choices = ['Taraf', 'Hadith', 'Isnad', 'Book'], value = 'Taraf', label = 'Variable to Display', info = 'Choose the variable to visualize.') |
|
taraf_number = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1) |
|
narr = gr.Textbox(label='Narrator', info='Choose a Narrator (Refer to full isnad from previous tab)') |
|
btn_narr = gr.Button('Visualize') |
|
btn_narr.click(fn=visualize_narrator_taraf, inputs=[taraf_number, narr, Yaxis], outputs=[gr.HTML(), gr.DataFrame(wrap=True)]) |
|
demo.launch() |
|
|