File size: 23,675 Bytes
c71a7d8 f59ce12 1e1f917 6baf346 3f8ecd9 c71a7d8 a116d30 e072981 448861d c71a7d8 261d935 c71a7d8 a116d30 261d935 c71a7d8 8edff27 c71a7d8 cffe818 a116d30 448861d c71a7d8 a116d30 5d223db a116d30 c71a7d8 5d223db 028d3cf b8be8d2 2b5e2b5 3f8ecd9 f59ce12 d5000da f59ce12 c71a7d8 428375d 3f8ecd9 d5000da 46e1655 d5000da ecfd1f4 c71a7d8 f59ce12 ecfd1f4 f59ce12 ef641ab c71a7d8 f59ce12 d5000da f59ce12 3f8ecd9 f59ce12 3f8ecd9 f59ce12 3f8ecd9 321b6f5 3f8ecd9 6baf346 bb8f84b 7d2cacf 913a5f0 7d2cacf 3f8ecd9 7d2cacf 3f8ecd9 321b6f5 3f8ecd9 713ea62 d8ae036 3f8ecd9 7d2cacf 261d935 58515bc 261d935 c71a7d8 5187c1e 7d2cacf c71a7d8 5b4a284 0c727c4 5b4a284 bb7ce2d 5b4a284 786cf64 6baf346 5b4a284 6baf346 5b4a284 ca30736 5b4a284 428375d 5b4a284 e3742c4 5b4a284 3291a65 0323a61 3291a65 ecfd1f4 028d3cf d5207f2 6baf346 d5000da 6baf346 09f5baa ca30736 09f5baa 428375d 09f5baa d5207f2 09f5baa 248b1ce 09f5baa d5207f2 09f5baa a77555e a116d30 c71a7d8 6dcab67 6baf346 681c209 6baf346 681c209 6baf346 681c209 6baf346 681c209 6a7641c 6baf346 252036c 6baf346 9d87698 f57ee90 5cca2ac 681c209 6baf346 681c209 ca30736 681c209 6baf346 681c209 45e3c85 6baf346 681c209 1825a9f 681c209 c71a7d8 3291a65 02d71bd 3291a65 e841dd9 c72c122 3291a65 24e5e4e 5b4a284 0ad044a 5b4a284 e3742c4 02d71bd e78a4d2 02d71bd 028d3cf 02d71bd 4a367b3 a77555e 681c209 3291a65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
import gradio as gr
from pyvis.network import Network
import networkx as nx
import numpy as np
import pandas as pd
import os
from datasets import load_dataset
from datasets import Features
from datasets import Value
from datasets import Dataset
import matplotlib.pyplot as plt
import re
from collections import defaultdict
from huggingface_hub import hf_hub_download
import json
pattern = r'"(.*?)"'
# this pattern captures anything in a double quotes.
Secret_token = os.getenv('HF_token')
dataset = load_dataset('FDSRashid/hadith_info',data_files = 'Basic_Edge_Information.csv', token = Secret_token, split = 'train')
edge_info = dataset.to_pandas()
features = Features({'Rawi ID': Value('int32'), 'Famous Name': Value('string'), 'Narrator Rank': Value('string'), 'Number of Narrations': Value('string'), 'Generation': Value('string')})
narrator_bios = load_dataset("FDSRashid/hadith_info", data_files = 'Teacher_Bios.csv', token = Secret_token,features=features )
narrator_bios = narrator_bios['train'].to_pandas()
narrator_bios.loc[49845, 'Narrator Rank'] = 'ุฑุณูู ุงููู'
narrator_bios.loc[49845, 'Number of Narrations'] = 0
narrator_bios['Number of Narrations'] = narrator_bios['Number of Narrations'].astype(int)
narrator_bios.loc[49845, 'Number of Narrations'] = 327512
# 8125 Narrators have no Generation, listed in dataset as None
narrator_bios['Generation'] = narrator_bios['Generation'].replace([None], [-1])
narrator_bios['Generation'] = narrator_bios['Generation'].astype(int)
features = Features({'matn': Value('string'), 'taraf_ID': Value('string'), 'bookid_hadithid': Value('string')})
dataset = load_dataset("FDSRashid/hadith_info", data_files = 'All_Matns.csv',token = Secret_token, features = features)
matn_info = dataset['train'].to_pandas()
matn_info = matn_info.drop(97550)
matn_info = matn_info.drop(307206)
matn_info['taraf_ID'] = matn_info['taraf_ID'].replace('KeyAbsent', -1)
matn_info['taraf_ID'] = matn_info['taraf_ID'].astype(int)
# Isnad Info Hadiths column is structured like {"BookNum_HadithNum", ...} for each edge
isnad_info = load_dataset('FDSRashid/hadith_info',token = Secret_token, data_files = 'isnad_info.csv', split = 'train').to_pandas()
isnad_info['Hadiths Cleaned'] = isnad_info['Hadiths'].apply(lambda x: [re.findall(pattern, string)[0].split("_") for string in x[1:-1].split(',')])
# Hadiths Cleaned is a list of lists, each sub-list is Book Id, Hadith ID
taraf_max = np.max(matn_info['taraf_ID'].unique())
isnad_info['Tarafs Cleaned'] = isnad_info['Tarafs'].apply(lambda x: np.array([int(i.strip(' ')) for i in x[1:-1].split(',')]))
cmap = plt.colormaps['cool']
books = load_dataset('FDSRashid/Hadith_info', data_files='Books.csv', token = Secret_token)['train'].to_pandas()
matn_info['Book_ID'] = matn_info['bookid_hadithid'].apply(lambda x: int(x.split('_')[0]))
matn_info['Hadith Number'] = matn_info['bookid_hadithid'].apply(lambda x: int(x.split('_')[1]))
matn_info = pd.merge(matn_info, books, on='Book_ID')
# Preprocess narrator_bios into a dictionary
narrator_info = narrator_bios.set_index('Rawi ID').to_dict(orient='index')
# Download and read a file
file_path = hf_hub_download(
repo_id="FDSRashid/hadith_info", # read in fast lookup data structure
filename="hadith_lookup.json",
repo_type="dataset",
token=Secret_token,
)
with open(file_path, 'r') as f:
hadith_lookup_dict = json.load(f)
HADITH_LOOKUP = defaultdict(list, hadith_lookup_dict)
def value_to_hex(value):
rgba_color = cmap(value)
return "#{:02X}{:02X}{:02X}".format(int(rgba_color[0] * 255), int(rgba_color[1] * 255), int(rgba_color[2] * 255))
def get_node_info(node):
node = int(node) # Ensure node is an integer
info = narrator_info.get(node, {})
student_narrations = info.get('Number of Narrations', 1)
student_gen = info.get('Generation', -1)
student_rank = info.get('Narrator Rank', 'ููุงู')
node_name = info.get('Famous Name', 'ููุงู')
return info, student_narrations, student_gen, student_rank, node_name
def lookup_hadith(taraf_hadith, hadith_lookup):
"""
Returns a list of unique elements from the hadith_lookup for the given taraf_hadith.
Parameters:
taraf_hadith (str or list of str): A string or list of strings to look up.
hadith_lookup (defaultdict): A defaultdict containing the hadith data.
Returns:
list: A list of the unique indices for isnad_info. so which edges for that matn
"""
# Ensure taraf_hadith is always a list
if isinstance(taraf_hadith, str):
taraf_hadith = [taraf_hadith]
# Create a set to accumulate unique elements
unique_elements = {elem for key in taraf_hadith for elem in hadith_lookup[key]}
# Convert the set to a list for consistency
return list(unique_elements)
def visualize_isnad(taraf_num, yaxis):
# Precompute filtered dataframes
taraf = matn_info[matn_info['taraf_ID'] == taraf_num]
taraf_hadith = taraf['bookid_hadithid'].to_list()
# Precompute hadiths where taraf_num exists
hadith_cleaned = isnad_info['Tarafs Cleaned'].apply(lambda x: taraf_num in x)
isnad_hadith = isnad_info[hadith_cleaned]
lst_hadith = []
for i, hadith_parts in enumerate(taraf_hadith):
# look up hadith for each bookid_hadithid
isnad_hadith1 = isnad_info.iloc[lookup_hadith(taraf_hadith[i], HADITH_LOOKUP)][['Source', 'Destination']]
# Create graph and find end nodes
G = nx.from_pandas_edgelist(isnad_hadith1, source='Source', target='Destination', create_using=nx.DiGraph())
nodes = [int(n) for n, d in G.out_degree() if d == 0]
if nodes:
# Batch fetch data from narrator_bios for efficiency
bio_data = narrator_bios[narrator_bios['Rawi ID'].isin(nodes)]
for n in nodes:
gen_node = bio_data.loc[bio_data['Rawi ID'] == n, 'Generation'].squeeze()
gen_node = gen_node if pd.notna(gen_node) else -1
name_node = bio_data.loc[bio_data['Rawi ID'] == n, 'Famous Name'].squeeze()
name_node = name_node if pd.notna(name_node) else 'ููุงู'
# Append result for each node
lst_hadith.append([
taraf.iloc[i]['matn'],
gen_node,
name_node,
taraf.iloc[i]['Book_Name'],
taraf.iloc[i]['Author'],
taraf.iloc[i]['Hadith Number'],
n,
i
])
# Convert to DataFrame
df = pd.DataFrame(lst_hadith, columns=['Matn', 'Generation', 'Name', 'Book_Name', 'Author', 'Book Hadith Number', 'End Transmitter ID', 'Hadith Number'])
isnad_hadith[['Source', 'Destination']] = isnad_hadith[['Source', 'Destination']].astype(int)
# Merge isnad_hadith with narrator_bios for Teacher and Student
isnad_hadith = isnad_hadith.merge(narrator_bios[['Rawi ID', 'Famous Name']], left_on='Source', right_on='Rawi ID', how='left').rename(columns={'Famous Name': 'Teacher'})
isnad_hadith = isnad_hadith.merge(narrator_bios[['Rawi ID', 'Famous Name']], left_on='Destination', right_on='Rawi ID', how='left').rename(columns={'Famous Name': 'Student'})
isnad_hadith[['Source', 'Destination']] = isnad_hadith[['Source', 'Destination']].astype(str)
# Fill missing values with 'ููุงู'
# isnad_hadith['Teacher'].fillna('ููุงู', inplace=True)
# isnad_hadith['Student'].fillna('ููุงู', inplace=True)
end_nodes = df['End Transmitter ID'].tolist()
G = nx.from_pandas_edgelist(isnad_hadith, source = 'Source', target = 'Destination', create_using = nx.DiGraph())
isnad_pos = nx.nx_agraph.graphviz_layout(G, prog='dot')
x_stretch = 4
y_stretch = 4
net = Network(directed =True, select_menu=True, cdn_resources='remote')
# Precompute end_matn_info for each end node
end_node_data = df.groupby('End Transmitter ID').apply(lambda x: " ".join(x["Hadith Number"].astype("string"))).to_dict()
# Loop over isnad_pos
for node, pos in isnad_pos.items():
node_info, student_narrations, student_gen, student_rank, node_name = get_node_info(node)
label = f'{node_name} \n {student_rank} \n ID: {node} - Gen {student_gen}'
size = 50
font_color = 'red'
if node == '99999':
label = f'{node_name} \n ID: {node} - Gen {student_gen}'
size = 70
font_color = 'black'
elif int(node) in end_nodes:
hadith_numbers = end_node_data.get(int(node), '')
label += f' \n Hadith {hadith_numbers}'
net.add_node(node, font={'size': 30, 'color': font_color}, color=value_to_hex(student_narrations), label=label, x=pos[0] * x_stretch, y=-pos[1] * y_stretch, size=size)
# Add edges efficiently
edge_data = isnad_hadith[['Source', 'Destination', f'{yaxis} Count']].values
for source, target, count in edge_data:
net.add_edge(source, target, color=value_to_hex(int(count)), label=f"{count}")
net.toggle_physics(False)
html = net.generate_html()
html = html.replace("'", "\"")
df = df.rename(columns = {'Generation': 'Gen.', 'Book Hadith Number': 'Hdth Num', 'End Transmitter ID': 'End Narrator ID', 'Hadith Number': 'Index', 'Book_Name': 'Book', 'Name':'Final Narrator'})
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>""" , df.drop('Hdth Num', axis=1)
def visualize_subTaraf(taraf_num, hadith_str, yaxis):
hadith_list = hadith_str.split(',')
hadith_list = [hadith.strip() for hadith in hadith_list]
hadiths = np.array([], dtype=int)
for hadith in hadith_list:
if '-' in hadith:
if hadith.count('-') > 1:
#print('Please use only one Dash mark!')
raise gr.Error('Please use only one Dash mark!')
hadith_multi = hadith.strip().split('-')
if any([not had.isnumeric() for had in hadith_multi]):
#print('Invalid Begining')
raise gr.Error('Invalid Begining')
elif len(hadith_multi) != 2:
#print('Two numbers for a range of Hadith numbers please!')
raise gr.Error('Two numbers for a range of Hadith numbers please!')
hadith_multi = [int(had) for had in hadith_multi]
hadiths = np.append(hadiths, np.arange(hadith_multi[0], hadith_multi[1] +1))
elif hadith.isnumeric():
hadiths = np.append(hadiths, int(hadith))
else:
#print('Invalid Data format!')
raise gr.Error("Invalid Data format!")
hadiths= np.unique(hadiths)
taraf = matn_info[matn_info['taraf_ID'] == taraf_num]
num_hadith = taraf.shape[0]
if np.max(hadiths) > num_hadith:
raise gr.Error(f'Hadith index outside of range. Total Number of Hadith in this Taraf: {num_hadith}')
taraf['Index'] = np.arange(num_hadith)
sub_taraf = taraf[taraf['Index'].isin(hadiths)]
isnad_hadith = isnad_info.iloc[lookup_hadith(sub_taraf['bookid_hadithid'].to_list(), HADITH_LOOKUP)]
isnad_hadith[['Source', 'Destination']] = isnad_hadith[['Source', 'Destination']].astype(int)
# Merge isnad_hadith with narrator_bios for Teacher and Student
isnad_hadith = isnad_hadith.merge(narrator_bios[['Rawi ID', 'Famous Name']], left_on='Source', right_on='Rawi ID', how='left').rename(columns={'Famous Name': 'Teacher'})
isnad_hadith = isnad_hadith.merge(narrator_bios[['Rawi ID', 'Famous Name']], left_on='Destination', right_on='Rawi ID', how='left').rename(columns={'Famous Name': 'Student'})
isnad_hadith[['Source', 'Destination']] = isnad_hadith[['Source', 'Destination']].astype(str)
# isnad_hadith['Teacher'].fillna('ููุงู', inplace=True)
# isnad_hadith['Student'].fillna('ููุงู', inplace=True)
G = nx.from_pandas_edgelist(isnad_hadith, source = 'Source', target = 'Destination', create_using = nx.DiGraph())
isnad_pos = nx.nx_agraph.graphviz_layout(G, prog='dot')
x_stretch = 4
y_stretch = 4
net = Network(directed =True, select_menu=True, cdn_resources='remote')
for node, pos in isnad_pos.items():
node_info,student_narrations,student_gen, student_rank, node_name = get_node_info(node)
if node == '99999':
net.add_node(node, font = {'size':50, 'color': 'black'}, color = '#000000', label = f'{node_name} \n ID: {node} - Gen {student_gen}', x= pos[0]*x_stretch, y= -1*pos[1]*y_stretch, size= 70)
else:
net.add_node(node, font = {'size':30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{node_name} \n {student_rank} \n ID: {node} - Gen {student_gen}', x= pos[0]*x_stretch, y= -1*pos[1]*y_stretch, size= 50)
for _, row in isnad_hadith.iterrows():
source = row['Source']
target = row['Destination']
net.add_edge(source, target, color = value_to_hex(int(row[f'{yaxis} Count'])), label = f"{row[f'{yaxis} Count']}")
net.toggle_physics(False)
html = net.generate_html()
html = html.replace("'", "\"")
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>""", sub_taraf[['matn', 'Book_Name', 'Author', 'Book_ID', 'Hadith Number']]
def taraf_booknum(taraf_num):
taraf = matn_info[matn_info['taraf_ID'] == taraf_num]
num_hadith = taraf.shape[0]
taraf['Index'] = np.arange(num_hadith)
return taraf[['matn', 'Book_ID', 'Hadith Number', 'Book_Name', 'Author', 'Index']]
def visualize_hadith_isnad(df, yaxis):
df['bookid_hadithid'] = df['Book_ID'].astype(str) + '_' + df['Hadith Number'].astype(str)
hadith = matn_info[matn_info['bookid_hadithid'].isin(df['bookid_hadithid'])]
taraf_hadith = df['bookid_hadithid'].to_list()
isnad_hadith = isnad_info.iloc[lookup_hadith(taraf_hadith, HADITH_LOOKUP)]
isnad_hadith[['Source', 'Destination']] = isnad_hadith[['Source', 'Destination']].astype(int)
# Merge isnad_hadith with narrator_bios for Teacher and Student
isnad_hadith = isnad_hadith.merge(narrator_bios[['Rawi ID', 'Famous Name']], left_on='Source', right_on='Rawi ID', how='left').rename(columns={'Famous Name': 'Teacher'})
isnad_hadith = isnad_hadith.merge(narrator_bios[['Rawi ID', 'Famous Name']], left_on='Destination', right_on='Rawi ID', how='left').rename(columns={'Famous Name': 'Student'})
isnad_hadith[['Source', 'Destination']] = isnad_hadith[['Source', 'Destination']].astype(str)
# isnad_hadith['Teacher'].fillna('ููุงู', inplace=True)
# isnad_hadith['Student'].fillna('ููุงู', inplace=True)
G = nx.from_pandas_edgelist(isnad_hadith, source = 'Source', target = 'Destination', create_using = nx.DiGraph())
isnad_pos = nx.nx_agraph.graphviz_layout(G, prog='dot')
x_stretch = 4
y_stretch = 4
net = Network(directed =True, select_menu=True, cdn_resources='remote')
for node, pos in isnad_pos.items():
node_info,student_narrations,student_gen, student_rank, node_name = get_node_info(node)
if node == '99999':
net.add_node(node, font = {'size':50, 'color': 'black'}, color = '#000000', label = f'{node_name} \n ID: {node} - Gen {student_gen}', x= pos[0]*x_stretch, y= -1*pos[1]*y_stretch, size= 70)
else:
net.add_node(node, font = {'size':30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{node_name} \n {student_rank} \n ID: {node} - Gen {student_gen}', x= pos[0]*x_stretch, y= -1*pos[1]*y_stretch, size= 50)
for _, row in isnad_hadith.iterrows():
source = row['Source']
target = row['Destination']
net.add_edge(source, target, color = value_to_hex(int(row[f'{yaxis} Count'])), label = f"{row[f'{yaxis} Count']}")
net.toggle_physics(False)
html = net.generate_html()
html = html.replace("'", "\"")
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>""" , hadith[['matn', 'Book_ID', 'Hadith Number', 'Book_Name', 'Author', 'taraf_ID']]
def visualize_narrator_taraf(taraf_num, narrator, yaxis):
taraf = matn_info[matn_info['taraf_ID'] == taraf_num].copy()
taraf['Index'] = np.arange(len(taraf))
hadith_cleaned = isnad_info['Tarafs Cleaned'].apply(lambda x: taraf_num in x)
isnad_hadith = isnad_info[hadith_cleaned]
isnad_hadith[['Source', 'Destination']] = isnad_hadith[['Source', 'Destination']].astype(int)
# Merge isnad_hadith with narrator_bios for Teacher and Student
isnad_hadith = isnad_hadith.merge(narrator_bios[['Rawi ID', 'Famous Name']], left_on='Source', right_on='Rawi ID', how='left').rename(columns={'Famous Name': 'Teacher'})
isnad_hadith = isnad_hadith.merge(narrator_bios[['Rawi ID', 'Famous Name']], left_on='Destination', right_on='Rawi ID', how='left').rename(columns={'Famous Name': 'Student'})
isnad_hadith[['Source', 'Destination']] = isnad_hadith[['Source', 'Destination']].astype(str)
taraf_hadith = taraf['bookid_hadithid'].to_list()
# original graph of whole taraf
G = nx.from_pandas_edgelist(isnad_hadith, source = 'Source', target = 'Destination', create_using = nx.DiGraph())
if narrator not in G.nodes():
raise gr.Error('Narrator not in Isnad of Taraf!')
matns_with_narrator = []
end_node = {}
# Process each hadith in taraf_hadith_split
for idx, split_hadith in enumerate(taraf_hadith):
isnad_hadith1 = isnad_info.iloc[lookup_hadith(taraf_hadith[idx], HADITH_LOOKUP)]
G1 = nx.from_pandas_edgelist(isnad_hadith1, source='Source', target='Destination', create_using=nx.DiGraph())
if narrator in G1.nodes:
matns_with_narrator.append(taraf_hadith[idx])
for node in (n for n, d in G1.out_degree() if d == 0):
end_node.setdefault(node, []).append(str(idx))
isnad_hadith = isnad_info.iloc[lookup_hadith(matns_with_narrator, HADITH_LOOKUP)]
G = nx.from_pandas_edgelist(isnad_hadith, source = 'Source', target = 'Destination', create_using = nx.DiGraph())
isnad_pos = nx.nx_agraph.graphviz_layout(G, prog='dot')
narrator_matn_info = taraf[taraf['bookid_hadithid'].isin(matns_with_narrator)]
narrator_matn_info['Subset Index'] = np.arange(len(narrator_matn_info))
# Visualization with pyvis
x_stretch = 4
y_stretch = 4
net = Network(directed =True, select_menu=True, cdn_resources='remote')
for node, pos in isnad_pos.items():
node_info, student_narrations, student_gen, student_rank, node_name = get_node_info(node)
label = f'{node_name} \n ID: {node} - Gen {student_gen}'
size = 70 if node == '99999' else 50
font_color = 'black' if node == '99999' else 'red'
hadiths = f" \n Hadiths {', '.join(end_node[node])}" if node in end_node else ''
net.add_node(node, font={'size': 30, 'color': font_color}, color=value_to_hex(student_narrations),
label=f"{label} {hadiths}", x=pos[0] * x_stretch, y=-pos[1] * y_stretch, size=size)
for edge in G.edges:
row = isnad_hadith[(isnad_hadith['Source'] == edge[0]) & (isnad_hadith['Destination'] == edge[1])].iloc[0]
net.add_edge(edge[0], edge[1], color=value_to_hex(int(row[f'{yaxis} Count'])), label=f"{row[f'{yaxis} Count']}")
net.toggle_physics(False)
html = net.generate_html()
html = html.replace("'", "\"")
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>""" , narrator_matn_info[['matn', 'Book_Name', 'Author', 'Book_ID', 'Hadith Number', 'Index', 'Subset Index']]
with gr.Blocks() as demo:
with gr.Tab("Whole Taraf Visualizer"):
Yaxis = gr.Dropdown(choices = ['Taraf', 'Hadith', 'Isnad', 'Book'], value = 'Taraf', label = 'Variable to Display', info = 'Choose the variable to visualize.')
taraf_number = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1)
btn = gr.Button('Submit')
#
btn.click(fn = visualize_isnad, inputs = [taraf_number, Yaxis], outputs = [gr.HTML(), gr.DataFrame(wrap=True, column_widths=[43, 8, 11,11,10,8, 9])])
with gr.Tab("Book and Hadith Number Retriever"):
taraf_num = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1)
btn_num = gr.Button('Retrieve')
btn_num.click(fn=taraf_booknum, inputs = [taraf_num], outputs= [gr.DataFrame(wrap=True)])
with gr.Tab('Sub Taraf Visualizer'):
taraf_num = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1)
Yaxis = gr.Dropdown(choices = ['Taraf', 'Hadith', 'Isnad', 'Book'], value = 'Taraf', label = 'Variable to Display', info = 'Choose the variable to visualize.')
hadith_str = gr.Textbox(label='Hadith Selection', info='Choose which range of Hadith you would like visualized from the Taraf (eg "1, 2, 4-7")')
btn_sub = gr.Button('Visualize')
btn_sub.click(fn=visualize_subTaraf, inputs = [taraf_num, hadith_str, Yaxis], outputs=[gr.HTML(), gr.DataFrame(wrap=True)])
with gr.Tab('Select Hadith Isnad Visualizer'):
yyaxis = gr.Dropdown(choices = ['Taraf', 'Hadith', 'Isnad', 'Book'], value = 'Taraf', label = 'Variable to Display', info = 'Choose the variable to visualize.')
hadith_selection = gr.Dataframe(
headers=["Book_ID", "Hadith Number"],
datatype=["number", "number"],
row_count=5,
col_count=(2, "fixed"))
btn_hadith = gr.Button('Visualize')
btn_hadith.click(fn=visualize_hadith_isnad, inputs=[hadith_selection, yyaxis], outputs=[gr.HTML(), gr.DataFrame(wrap=True)])
with gr.Tab('Taraf Narrator Isnad Visualizer'):
Yaxis = gr.Dropdown(choices = ['Taraf', 'Hadith', 'Isnad', 'Book'], value = 'Taraf', label = 'Variable to Display', info = 'Choose the variable to visualize.')
taraf_number = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1)
narr = gr.Textbox(label='Narrator', info='Choose a Narrator (Refer to full isnad from previous tab)')
btn_narr = gr.Button('Visualize')
btn_narr.click(fn=visualize_narrator_taraf, inputs=[taraf_number, narr, Yaxis], outputs=[gr.HTML(), gr.DataFrame(wrap=True)])
demo.launch()
|