Update app.py
Browse files
app.py
CHANGED
@@ -19,13 +19,15 @@ dataset = load_dataset('FDSRashid/hadith_info',data_files = 'Basic_Edge_Informat
|
|
19 |
|
20 |
edge_info = dataset.to_pandas()
|
21 |
|
22 |
-
features = Features({'Rawi ID': Value('int32'), 'Famous Name': Value('string'), 'Narrator Rank': Value('string'), 'Number of Narrations': Value('string')})
|
23 |
narrator_bios = load_dataset("FDSRashid/hadith_info", data_files = 'Teacher_Bios.csv', token = Secret_token,features=features )
|
24 |
narrator_bios = narrator_bios['train'].to_pandas()
|
25 |
narrator_bios.loc[49845, 'Narrator Rank'] = 'رسول الله'
|
26 |
narrator_bios.loc[49845, 'Number of Narrations'] = 0
|
27 |
narrator_bios['Number of Narrations'] = narrator_bios['Number of Narrations'].astype(int)
|
28 |
narrator_bios.loc[49845, 'Number of Narrations'] = 443471
|
|
|
|
|
29 |
|
30 |
|
31 |
features = Features({'matn': Value('string'), 'taraf_ID': Value('string'), 'bookid_hadithid': Value('string')})
|
@@ -41,7 +43,7 @@ matn_info['taraf_ID'] = matn_info['taraf_ID'].astype(int)
|
|
41 |
matn_info = matn_info.sort_values('taraf_ID')
|
42 |
tarafs = matn_info['taraf_ID'].unique()
|
43 |
for i, taraf in enumerate(tarafs):
|
44 |
-
|
45 |
matn_info['taraf_ID_New'] = matn_info['taraf_ID_New'].astype(int)
|
46 |
|
47 |
|
@@ -59,46 +61,56 @@ def value_to_hex(value):
|
|
59 |
#edge_info, matn_info, narrator_bios, isnad_info
|
60 |
|
61 |
def visualize_isnad(taraf_num, yaxis):
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
target = row['Student']
|
76 |
-
teacher_info = narrator_bios[narrator_bios['Rawi ID'] == int(row['Source'])]
|
77 |
-
student_info = narrator_bios[narrator_bios['Rawi ID'] == int(row['Destination'])]
|
78 |
-
isnad = isnad_info[(isnad_info['Source'] == row['Source']) & (isnad_info['Destination'] == row['Destination'])]
|
79 |
-
teacher_narrations = teacher_info['Number of Narrations'].to_list()[0]
|
80 |
-
student_narrations = student_info['Number of Narrations'].to_list()[0]
|
81 |
-
if row['Source'] == '99999':
|
82 |
-
net.add_node(source, font = {'size':50, 'color': 'Black'}, color = '#000000')
|
83 |
-
else:
|
84 |
-
net.add_node(source, font = {'size':30, 'color': 'red'}, color = value_to_hex(teacher_narrations), label = f'{source} \n {teacher_info["Narrator Rank"].to_list()[0]}')
|
85 |
-
net.add_node(target, font = {'size': 30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{target} \n{student_info["Narrator Rank"].to_list()[0]}')
|
86 |
-
net.add_edge(source, target, color = value_to_hex(int(isnad['Hadith Count'].to_list()[0])), label = f"{isnad['Hadith Count'].to_list()[0]}")
|
87 |
-
net.barnes_hut(gravity=-5000, central_gravity=0.3, spring_length=200)
|
88 |
-
html = net.generate_html()
|
89 |
-
html = html.replace("'", "\"")
|
90 |
-
|
91 |
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
|
94 |
allow-scripts allow-same-origin allow-popups
|
95 |
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
|
96 |
-
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>"""
|
97 |
|
98 |
|
99 |
with gr.Blocks() as demo:
|
100 |
Yaxis = gr.Dropdown(choices = ['Tarafs', 'Hadiths', 'Isnads', 'Books'], value = 'Tarafs', label = 'Variable to Display', info = 'Choose the variable to visualize.')
|
101 |
taraf_number = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1)
|
102 |
btn = gr.Button('Submit')
|
103 |
-
btn.click(fn = visualize_isnad, inputs = [taraf_number, Yaxis], outputs = gr.HTML())
|
104 |
demo.launch()
|
|
|
19 |
|
20 |
edge_info = dataset.to_pandas()
|
21 |
|
22 |
+
features = Features({'Rawi ID': Value('int32'), 'Famous Name': Value('string'), 'Narrator Rank': Value('string'), 'Number of Narrations': Value('string'), 'Generation': Value('string')})
|
23 |
narrator_bios = load_dataset("FDSRashid/hadith_info", data_files = 'Teacher_Bios.csv', token = Secret_token,features=features )
|
24 |
narrator_bios = narrator_bios['train'].to_pandas()
|
25 |
narrator_bios.loc[49845, 'Narrator Rank'] = 'رسول الله'
|
26 |
narrator_bios.loc[49845, 'Number of Narrations'] = 0
|
27 |
narrator_bios['Number of Narrations'] = narrator_bios['Number of Narrations'].astype(int)
|
28 |
narrator_bios.loc[49845, 'Number of Narrations'] = 443471
|
29 |
+
narrator_bios['Generation'] = narrator_bios['Generation'].replace([None], [-1])
|
30 |
+
narrator_bios['Generation'] = narrator_bios['Generation'].astype(int)
|
31 |
|
32 |
|
33 |
features = Features({'matn': Value('string'), 'taraf_ID': Value('string'), 'bookid_hadithid': Value('string')})
|
|
|
43 |
matn_info = matn_info.sort_values('taraf_ID')
|
44 |
tarafs = matn_info['taraf_ID'].unique()
|
45 |
for i, taraf in enumerate(tarafs):
|
46 |
+
matn_info.loc[matn_info['taraf_ID'] == taraf, 'taraf_ID_New'] = i + 1 # Replace 'a' with 'e' in column 'C' where the condition is met
|
47 |
matn_info['taraf_ID_New'] = matn_info['taraf_ID_New'].astype(int)
|
48 |
|
49 |
|
|
|
61 |
#edge_info, matn_info, narrator_bios, isnad_info
|
62 |
|
63 |
def visualize_isnad(taraf_num, yaxis):
|
64 |
+
taraf_hadith = matn_info[matn_info['taraf_ID_New'] == taraf_num]['bookid_hadithid'].to_list()
|
65 |
+
taraf_matns = matn_info[matn_info['taraf_ID_New'] == taraf_num]['matn'].to_list()
|
66 |
+
taraf_hadith_split = [i.split('_') for i in taraf_hadith]
|
67 |
+
lst_hadith = []
|
68 |
+
for i in range(len(taraf_hadith_split)):
|
69 |
+
isnad_in_hadith1 = isnad_info['Hadiths Cleaned'].apply(lambda x: list_hadith_split[i] in x )
|
70 |
+
isnad_hadith1 = isnad_info[isnad_in_hadith1][['Source', 'Destination']]
|
71 |
+
G = nx.from_pandas_edgelist(isnad_hadith1, source = 'Source', target = 'Destination', create_using = nx.DiGraph())
|
72 |
+
node = [int(n) for n, d in G.out_degree() if d == 0][0]
|
73 |
+
gen_node = narrator_bios[narrator_bios['Rawi ID']==node]['Generation'].iloc[0]
|
74 |
+
name_node = narrator_bios[narrator_bios['Rawi ID']==node]['Famous Name'].iloc[0]
|
75 |
+
lst_hadith.append([taraf_matns[i], gen_node, name_node])
|
76 |
+
df = pd.DataFrame(lst_hadith, columns = ['Matn', 'Generation', 'Name'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
hadith_cleaned = isnad_info['Hadiths Cleaned'].apply(lambda x: any(i in x for i in taraf_hadith_split) )
|
79 |
+
isnad_hadith = isnad_info[hadith_cleaned][['Source', 'Destination']]
|
80 |
+
narrators = isnad_hadith.applymap(lambda x: narrator_bios[narrator_bios['Rawi ID'] == int(x)]['Famous Name'].to_list()).rename(columns={"Source": "Teacher", "Destination": "Student"})
|
81 |
+
isnad_hadith["Student"] = narrators['Student']
|
82 |
+
isnad_hadith["Teacher"] = narrators['Teacher']
|
83 |
+
filtered = isnad_hadith[(isnad_hadith['Teacher'].apply(lambda x: len(x)) == 1) & (isnad_hadith['Student'].apply(lambda x: len(x)) == 1)]
|
84 |
+
filtered['Student'] = filtered['Student'].apply(lambda x: x[0])
|
85 |
+
filtered['Teacher'] = filtered['Teacher'].apply(lambda x: x[0])
|
86 |
+
net = Network(directed =True)
|
87 |
+
for _, row in filtered.iterrows():
|
88 |
+
source = row['Teacher']
|
89 |
+
target = row['Student']
|
90 |
+
teacher_info = narrator_bios[narrator_bios['Rawi ID'] == int(row['Source'])]
|
91 |
+
student_info = narrator_bios[narrator_bios['Rawi ID'] == int(row['Destination'])]
|
92 |
+
isnad = isnad_info[(isnad_info['Source'] == row['Source']) & (isnad_info['Destination'] == row['Destination'])]
|
93 |
+
teacher_narrations = teacher_info['Number of Narrations'].to_list()[0]
|
94 |
+
student_narrations = student_info['Number of Narrations'].to_list()[0]
|
95 |
+
if row['Source'] == '99999':
|
96 |
+
net.add_node(source, font = {'size':50, 'color': 'Black'}, color = '#000000')
|
97 |
+
else:
|
98 |
+
net.add_node(source, font = {'size':30, 'color': 'red'}, color = value_to_hex(teacher_narrations), label = f'{source} \n {teacher_info["Narrator Rank"].to_list()[0]}')
|
99 |
+
net.add_node(target, font = {'size': 30, 'color': 'red'}, color = value_to_hex(student_narrations), label = f'{target} \n{student_info["Narrator Rank"].to_list()[0]}')
|
100 |
+
net.add_edge(source, target, color = value_to_hex(int(isnad['Hadith Count'].to_list()[0])), label = f"{isnad['Hadith Count'].to_list()[0]}")
|
101 |
+
net.barnes_hut(gravity=-5000, central_gravity=0.3, spring_length=200)
|
102 |
+
html = net.generate_html()
|
103 |
+
html = html.replace("'", "\"")
|
104 |
+
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera;
|
105 |
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
|
106 |
allow-scripts allow-same-origin allow-popups
|
107 |
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
|
108 |
+
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>""" , df
|
109 |
|
110 |
|
111 |
with gr.Blocks() as demo:
|
112 |
Yaxis = gr.Dropdown(choices = ['Tarafs', 'Hadiths', 'Isnads', 'Books'], value = 'Tarafs', label = 'Variable to Display', info = 'Choose the variable to visualize.')
|
113 |
taraf_number = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1)
|
114 |
btn = gr.Button('Submit')
|
115 |
+
btn.click(fn = visualize_isnad, inputs = [taraf_number, Yaxis], outputs = [gr.HTML(), gr.DataFrame()])
|
116 |
demo.launch()
|