Hemg's picture
Update app.py
ca9ec8f verified
raw
history blame contribute delete
459 Bytes
from transformers import pipeline
import gradio as gr
pipe = pipeline(model="Hemg/audiotranscribe") # change to "your-username/the-name-you-picked"
def transcribe(audio):
text = pipe(audio)["text"]
return text
iface = gr.Interface(
fn=transcribe,
inputs=gr.Audio( type="filepath"),
outputs="text",
title="Whisper Medical ASR",
description="Demo of OpenAI Whisper on medical transcription dataset",
)
iface.launch(share=True)