File size: 459 Bytes
0fa542f
 
 
ca9ec8f
0fa542f
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
from transformers import pipeline
import gradio as gr

pipe = pipeline(model="Hemg/audiotranscribe")  # change to "your-username/the-name-you-picked"

def transcribe(audio):
    text = pipe(audio)["text"]
    return text

iface = gr.Interface(
    fn=transcribe, 
    inputs=gr.Audio( type="filepath"), 
    outputs="text",
    title="Whisper Medical ASR",
    description="Demo of OpenAI Whisper on medical transcription dataset",
)

iface.launch(share=True)