3DVascNet / app.py
Hemaxi's picture
Create app.py
a134324 verified
raw
history blame
606 Bytes
import gradio as gr
import numpy as np
# Import your 3D image processing model here
def process_3d_image(input_image):
# Your model processing logic here
# This is a placeholder function
output_mask = np.random.randint(0, 2, input_image.shape).astype(bool)
return output_mask
demo = gr.Interface(
fn=process_3d_image,
inputs=gr.Model3D(label="Input 3D Image"),
outputs=gr.Model3D(label="Output 3D Binary Mask"),
title="3D Image to Binary Mask",
description="Upload a 3D image (x,y,z) and get a 3D binary mask as output."
)
if __name__ == "__main__":
demo.launch()