import gradio as gr import numpy as np # Import your 3D image processing model here def process_3d_image(input_image): # Your model processing logic here # This is a placeholder function output_mask = np.random.randint(0, 2, input_image.shape).astype(bool) return output_mask demo = gr.Interface( fn=process_3d_image, inputs=gr.Model3D(label="Input 3D Image"), outputs=gr.Model3D(label="Output 3D Binary Mask"), title="3D Image to Binary Mask", description="Upload a 3D image (x,y,z) and get a 3D binary mask as output." ) if __name__ == "__main__": demo.launch()