conqui-tts2 / app.py
Hematej's picture
Update app.py
da3316c verified
import gradio as gr
import torch
from TTS.api import TTS
import os
import soundfile as sf
import numpy as np
from pydub import AudioSegment
import tempfile
import gc
os.environ["COQUI_TOS_AGREED"] = "1"
# πŸš€ PERFORMANCE OPTIMIZATIONS
torch.backends.cudnn.benchmark = True # Optimize CUDA operations
torch.backends.cudnn.deterministic = False
# Smart device detection with memory optimization
use_gpu = torch.cuda.is_available()
device = "cuda" if use_gpu else "cpu"
print(f"[INFO] Using device: {device}")
if use_gpu:
print(f"[INFO] GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f} GB")
# βœ… OPTIMIZED XTTS Model Initialization
try:
# Use smaller model for faster inference if needed
model_name = "tts_models/multilingual/multi-dataset/xtts_v2"
tts = TTS(model_name, gpu=use_gpu, progress_bar=False) # Disable progress bar for speed
if not hasattr(tts, "synthesizer") or not hasattr(tts.synthesizer, "tts_model"):
raise RuntimeError("XTTS model failed to load correctly.")
# πŸš€ PERFORMANCE TWEAKS
if hasattr(tts.synthesizer.tts_model, 'inference'):
# Set inference parameters for speed
tts.synthesizer.tts_model.inference_noise_scale = 0.667
tts.synthesizer.tts_model.inference_noise_scale_w = 0.8
tts.synthesizer.tts_model.length_scale = 1.0
print(f"[INFO] XTTS model loaded successfully. GPU enabled: {use_gpu}")
except Exception as e:
print(f"[ERROR] Failed to initialize XTTS model: {str(e)}")
tts = None
# πŸš€ AUDIO PREPROCESSING FOR SPEED
def preprocess_audio(audio_path, target_sr=22050, max_duration=30):
"""Optimize audio for faster processing"""
try:
# Load and preprocess audio
audio_data, sr = sf.read(audio_path)
# Convert to mono if stereo
if len(audio_data.shape) > 1:
audio_data = np.mean(audio_data, axis=1)
# Trim silence and limit duration for speed
from scipy.signal import find_peaks
# Simple silence trimming
threshold = np.max(np.abs(audio_data)) * 0.01
non_silent = np.where(np.abs(audio_data) > threshold)[0]
if len(non_silent) > 0:
start_idx = max(0, non_silent[0] - int(0.1 * sr)) # Keep 0.1s before
end_idx = min(len(audio_data), non_silent[-1] + int(0.1 * sr)) # Keep 0.1s after
audio_data = audio_data[start_idx:end_idx]
# Limit duration for faster processing
max_samples = int(max_duration * sr)
if len(audio_data) > max_samples:
audio_data = audio_data[:max_samples]
# Resample if needed
if sr != target_sr:
from scipy.signal import resample
audio_data = resample(audio_data, int(len(audio_data) * target_sr / sr))
# Save preprocessed audio
temp_path = tempfile.mktemp(suffix='.wav')
sf.write(temp_path, audio_data, target_sr)
return temp_path
except Exception as e:
print(f"[WARNING] Audio preprocessing failed: {e}")
return audio_path
# πŸš€ OPTIMIZED TEXT PROCESSING
def optimize_text(text, max_length=500):
"""Optimize text for faster processing"""
# Limit text length for speed
if len(text) > max_length:
# Split at sentence boundaries
sentences = text.split('.')
result = ""
for sentence in sentences:
if len(result + sentence) > max_length:
break
result += sentence + "."
text = result.rstrip('.')
# Clean text
text = text.strip()
if not text.endswith(('.', '!', '?')):
text += '.'
return text
# βœ… OPTIMIZED clone() Function
def clone(text, audio):
if tts is None:
return None, "⚠ XTTS model failed to load."
if not text or not audio:
return None, "⚠ Error: Missing text or audio input."
try:
import time
start_time = time.time()
# βœ… Validate audio input
if isinstance(audio, bool) or not isinstance(audio, str) or not os.path.exists(audio):
return None, "⚠ Error: Invalid audio input format."
# πŸš€ PREPROCESSING FOR SPEED
print("[INFO] Preprocessing audio...")
processed_audio = preprocess_audio(audio)
print("[INFO] Optimizing text...")
optimized_text = optimize_text(text)
print(f"[INFO] Text length: {len(optimized_text)} characters")
output_path = "./output.wav"
# πŸš€ OPTIMIZED XTTS Processing
print("[INFO] Generating speech...")
# Clear GPU cache before processing
if use_gpu:
torch.cuda.empty_cache()
# Generate with optimized settings
tts.tts_to_file(
text=optimized_text,
speaker_wav=processed_audio,
language="en",
file_path=output_path,
split_sentences=True, # Better for long texts
# Additional optimization parameters
)
# Clean up temporary files
if processed_audio != audio:
try:
os.remove(processed_audio)
except:
pass
# Clear memory
if use_gpu:
torch.cuda.empty_cache()
gc.collect()
# βœ… Validate output
if not os.path.exists(output_path) or os.path.getsize(output_path) == 0:
return None, "⚠ Error: XTTS failed to generate audio."
# πŸš€ PERFORMANCE METRICS
end_time = time.time()
processing_time = end_time - start_time
# Calculate audio duration for real-time factor
audio_data, sr = sf.read(output_path)
audio_duration = len(audio_data) / sr
rtf = processing_time / audio_duration if audio_duration > 0 else 0
print(f"[PERFORMANCE] Processing time: {processing_time:.2f}s")
print(f"[PERFORMANCE] Audio duration: {audio_duration:.2f}s")
print(f"[PERFORMANCE] Real-time factor: {rtf:.2f}x")
return output_path, f"βœ… Generated in {processing_time:.1f}s (RTF: {rtf:.1f}x)"
except Exception as e:
print(f"[ERROR] XTTS Processing Error: {str(e)}")
# Clean up on error
if use_gpu:
torch.cuda.empty_cache()
gc.collect()
return None, f"⚠ Error: {str(e)}"
# πŸš€ OPTIMIZED Gradio Interface
def create_interface():
with gr.Blocks(
theme=gr.themes.Soft(primary_hue="teal"),
title="⚑ Fast Voice Clone"
) as iface:
gr.Markdown("# ⚑ Optimized Voice Cloning with XTTS")
gr.Markdown("*Faster processing with quality optimizations*")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="πŸ“ Text to speak",
placeholder="Enter text here (max 500 chars for optimal speed)...",
lines=3,
max_lines=5
)
audio_input = gr.Audio(
type='filepath',
label='🎀 Voice reference (10-30 seconds recommended)',
sources=['upload', 'microphone']
)
with gr.Row():
generate_btn = gr.Button("πŸš€ Generate Voice", variant="primary")
clear_btn = gr.Button("πŸ—‘οΈ Clear", variant="secondary")
with gr.Column():
status_output = gr.Textbox(
label="πŸ“Š Status",
interactive=False,
lines=2
)
audio_output = gr.Audio(
type='filepath',
label='πŸ”Š Generated Audio'
)
# Performance tips
gr.Markdown("""
### πŸš€ Performance Tips:
- Keep text under 500 characters for fastest processing
- Use 10-30 second reference audio clips
- GPU processing is ~5-10x faster than CPU
- Clear audio with minimal background noise works best
""")
# Event handlers
generate_btn.click(
fn=clone,
inputs=[text_input, audio_input],
outputs=[audio_output, status_output],
show_progress=True
)
clear_btn.click(
fn=lambda: (None, None, None, ""),
outputs=[text_input, audio_input, audio_output, status_output]
)
return iface
# βœ… Launch optimized interface
if __name__ == "__main__":
iface = create_interface()
iface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
quiet=False
)