File size: 9,000 Bytes
004e9ee
3348872
004e9ee
3ef3b16
3348872
da3316c
 
 
 
78af3b1
f94c6a4
004e9ee
da3316c
 
 
 
 
3348872
da3316c
 
 
 
 
8811bfd
da3316c
3348872
da3316c
 
 
 
 
3348872
 
da3316c
 
 
 
 
 
 
 
3348872
da3316c
3348872
 
da3316c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
004e9ee
da3316c
3348872
 
 
da3316c
3348872
 
da3316c
004e9ee
da3316c
 
 
3348872
 
 
da3316c
 
 
 
 
 
 
 
 
3348872
da3316c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3348872
 
da3316c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3348872
 
da3316c
 
 
 
 
004e9ee
da3316c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
004e9ee
da3316c
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import gradio as gr
import torch
from TTS.api import TTS
import os
import soundfile as sf
import numpy as np
from pydub import AudioSegment
import tempfile
import gc

os.environ["COQUI_TOS_AGREED"] = "1"

# πŸš€ PERFORMANCE OPTIMIZATIONS
torch.backends.cudnn.benchmark = True  # Optimize CUDA operations
torch.backends.cudnn.deterministic = False

# Smart device detection with memory optimization
use_gpu = torch.cuda.is_available()
device = "cuda" if use_gpu else "cpu"

print(f"[INFO] Using device: {device}")
if use_gpu:
    print(f"[INFO] GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f} GB")

# βœ… OPTIMIZED XTTS Model Initialization
try:
    # Use smaller model for faster inference if needed
    model_name = "tts_models/multilingual/multi-dataset/xtts_v2"
    
    tts = TTS(model_name, gpu=use_gpu, progress_bar=False)  # Disable progress bar for speed
    
    if not hasattr(tts, "synthesizer") or not hasattr(tts.synthesizer, "tts_model"):
        raise RuntimeError("XTTS model failed to load correctly.")
    
    # πŸš€ PERFORMANCE TWEAKS
    if hasattr(tts.synthesizer.tts_model, 'inference'):
        # Set inference parameters for speed
        tts.synthesizer.tts_model.inference_noise_scale = 0.667
        tts.synthesizer.tts_model.inference_noise_scale_w = 0.8
        tts.synthesizer.tts_model.length_scale = 1.0
    
    print(f"[INFO] XTTS model loaded successfully. GPU enabled: {use_gpu}")
    
except Exception as e:
    print(f"[ERROR] Failed to initialize XTTS model: {str(e)}")
    tts = None

# πŸš€ AUDIO PREPROCESSING FOR SPEED
def preprocess_audio(audio_path, target_sr=22050, max_duration=30):
    """Optimize audio for faster processing"""
    try:
        # Load and preprocess audio
        audio_data, sr = sf.read(audio_path)
        
        # Convert to mono if stereo
        if len(audio_data.shape) > 1:
            audio_data = np.mean(audio_data, axis=1)
        
        # Trim silence and limit duration for speed
        from scipy.signal import find_peaks
        
        # Simple silence trimming
        threshold = np.max(np.abs(audio_data)) * 0.01
        non_silent = np.where(np.abs(audio_data) > threshold)[0]
        
        if len(non_silent) > 0:
            start_idx = max(0, non_silent[0] - int(0.1 * sr))  # Keep 0.1s before
            end_idx = min(len(audio_data), non_silent[-1] + int(0.1 * sr))  # Keep 0.1s after
            audio_data = audio_data[start_idx:end_idx]
        
        # Limit duration for faster processing
        max_samples = int(max_duration * sr)
        if len(audio_data) > max_samples:
            audio_data = audio_data[:max_samples]
        
        # Resample if needed
        if sr != target_sr:
            from scipy.signal import resample
            audio_data = resample(audio_data, int(len(audio_data) * target_sr / sr))
        
        # Save preprocessed audio
        temp_path = tempfile.mktemp(suffix='.wav')
        sf.write(temp_path, audio_data, target_sr)
        
        return temp_path
        
    except Exception as e:
        print(f"[WARNING] Audio preprocessing failed: {e}")
        return audio_path

# πŸš€ OPTIMIZED TEXT PROCESSING
def optimize_text(text, max_length=500):
    """Optimize text for faster processing"""
    # Limit text length for speed
    if len(text) > max_length:
        # Split at sentence boundaries
        sentences = text.split('.')
        result = ""
        for sentence in sentences:
            if len(result + sentence) > max_length:
                break
            result += sentence + "."
        text = result.rstrip('.')
    
    # Clean text
    text = text.strip()
    if not text.endswith(('.', '!', '?')):
        text += '.'
    
    return text

# βœ… OPTIMIZED clone() Function
def clone(text, audio):
    if tts is None:
        return None, "⚠ XTTS model failed to load."
    
    if not text or not audio:
        return None, "⚠ Error: Missing text or audio input."
    
    try:
        import time
        start_time = time.time()
        
        # βœ… Validate audio input
        if isinstance(audio, bool) or not isinstance(audio, str) or not os.path.exists(audio):
            return None, "⚠ Error: Invalid audio input format."
        
        # πŸš€ PREPROCESSING FOR SPEED
        print("[INFO] Preprocessing audio...")
        processed_audio = preprocess_audio(audio)
        
        print("[INFO] Optimizing text...")
        optimized_text = optimize_text(text)
        print(f"[INFO] Text length: {len(optimized_text)} characters")
        
        output_path = "./output.wav"
        
        # πŸš€ OPTIMIZED XTTS Processing
        print("[INFO] Generating speech...")
        
        # Clear GPU cache before processing
        if use_gpu:
            torch.cuda.empty_cache()
        
        # Generate with optimized settings
        tts.tts_to_file(
            text=optimized_text,
            speaker_wav=processed_audio,
            language="en",
            file_path=output_path,
            split_sentences=True,  # Better for long texts
            # Additional optimization parameters
        )
        
        # Clean up temporary files
        if processed_audio != audio:
            try:
                os.remove(processed_audio)
            except:
                pass
        
        # Clear memory
        if use_gpu:
            torch.cuda.empty_cache()
        gc.collect()
        
        # βœ… Validate output
        if not os.path.exists(output_path) or os.path.getsize(output_path) == 0:
            return None, "⚠ Error: XTTS failed to generate audio."
        
        # πŸš€ PERFORMANCE METRICS
        end_time = time.time()
        processing_time = end_time - start_time
        
        # Calculate audio duration for real-time factor
        audio_data, sr = sf.read(output_path)
        audio_duration = len(audio_data) / sr
        rtf = processing_time / audio_duration if audio_duration > 0 else 0
        
        print(f"[PERFORMANCE] Processing time: {processing_time:.2f}s")
        print(f"[PERFORMANCE] Audio duration: {audio_duration:.2f}s")
        print(f"[PERFORMANCE] Real-time factor: {rtf:.2f}x")
        
        return output_path, f"βœ… Generated in {processing_time:.1f}s (RTF: {rtf:.1f}x)"
        
    except Exception as e:
        print(f"[ERROR] XTTS Processing Error: {str(e)}")
        # Clean up on error
        if use_gpu:
            torch.cuda.empty_cache()
        gc.collect()
        return None, f"⚠ Error: {str(e)}"

# πŸš€ OPTIMIZED Gradio Interface
def create_interface():
    with gr.Blocks(
        theme=gr.themes.Soft(primary_hue="teal"),
        title="⚑ Fast Voice Clone"
    ) as iface:
        
        gr.Markdown("# ⚑ Optimized Voice Cloning with XTTS")
        gr.Markdown("*Faster processing with quality optimizations*")
        
        with gr.Row():
            with gr.Column():
                text_input = gr.Textbox(
                    label="πŸ“ Text to speak",
                    placeholder="Enter text here (max 500 chars for optimal speed)...",
                    lines=3,
                    max_lines=5
                )
                
                audio_input = gr.Audio(
                    type='filepath',
                    label='🎀 Voice reference (10-30 seconds recommended)',
                    sources=['upload', 'microphone']
                )
                
                with gr.Row():
                    generate_btn = gr.Button("πŸš€ Generate Voice", variant="primary")
                    clear_btn = gr.Button("πŸ—‘οΈ Clear", variant="secondary")
            
            with gr.Column():
                status_output = gr.Textbox(
                    label="πŸ“Š Status",
                    interactive=False,
                    lines=2
                )
                
                audio_output = gr.Audio(
                    type='filepath',
                    label='πŸ”Š Generated Audio'
                )
        
        # Performance tips
        gr.Markdown("""
        ### πŸš€ Performance Tips:
        - Keep text under 500 characters for fastest processing
        - Use 10-30 second reference audio clips
        - GPU processing is ~5-10x faster than CPU
        - Clear audio with minimal background noise works best
        """)
        
        # Event handlers
        generate_btn.click(
            fn=clone,
            inputs=[text_input, audio_input],
            outputs=[audio_output, status_output],
            show_progress=True
        )
        
        clear_btn.click(
            fn=lambda: (None, None, None, ""),
            outputs=[text_input, audio_input, audio_output, status_output]
        )
    
    return iface

# βœ… Launch optimized interface
if __name__ == "__main__":
    iface = create_interface()
    iface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True,
        quiet=False
    )