Spaces:
Running
on
Zero
Running
on
Zero
1. Composition Generation script
Running the Script
Use the following command:
python generate_compositions.py --config path/to/config.json --create_grids
Parameters
--config: Path to the configuration JSON file.--create_grids: (Optional) Enable grid creation for visualization of the results.
Configuration File
The configuration file should be a JSON file containing the following keys:
Explanation of Config Keys
input_dir_base: Path to the directory containing the base images.input_dirs_concepts: List of paths to directories containing concept images.all_embeds_paths: List of.npyfiles containing precomputed embeddings for the concepts. The order should matchinput_dirs_concepts.ranks: List of integers specifying the rank for each concept’s projection matrix. The order should matchinput_dirs_concepts.output_base_dir: Path to store the generated images.prompt(optional): Additional text prompt.scale(optional): Scale parameter passed to IP Adapter.seed(optional): Random seed.num_samples(optional): Number of images to generate per combination.
2. Text Embeddings Script
This repository also includes a script for generating text embeddings using CLIP. The script takes a CSV file containing text descriptions and outputs a .npy file with the corresponding embeddings.
Running the Script
Use the following command:
python generate_text_embeddings.py --input_csv path/to/descriptions.csv --output_file path/to/output.npy --batch_size 100 --device cuda:0
Parameters
--input_csv: Path to the input CSV file containing text descriptions.--output_file: Path to save the output.npyfile.--batch_size: (Optional) Batch size for processing embeddings (default: 100).--device: (Optional) Device to run the model on.