Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
import torch | |
import spaces | |
from PIL import Image | |
import os | |
import torch.cuda | |
import gc | |
from gradio_client import Client, file | |
from pipeline_flux_ipa import FluxPipeline | |
from transformer_flux import FluxTransformer2DModel | |
from attention_processor import IPAFluxAttnProcessor2_0 | |
from transformers import AutoProcessor, SiglipVisionModel | |
from infer_flux_ipa_siglip import MLPProjModel, IPAdapter | |
from huggingface_hub import hf_hub_download | |
# Constants | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
image_encoder_path = "google/siglip-so400m-patch14-384" | |
ipadapter_path = hf_hub_download(repo_id="InstantX/FLUX.1-dev-IP-Adapter", filename="ip-adapter.bin") | |
transformer = FluxTransformer2DModel.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
subfolder="transformer", | |
torch_dtype=torch.bfloat16 | |
) | |
pipe = FluxPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
transformer=transformer, | |
torch_dtype=torch.bfloat16 | |
) | |
ip_model = IPAdapter(pipe, image_encoder_path, ipadapter_path, device="cuda", num_tokens=128) | |
def clear_gpu_memory(): | |
"""Clear GPU memory and cache""" | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
torch.cuda.ipc_collect() | |
gc.collect() | |
def resize_img(image, max_size=1024): | |
width, height = image.size | |
scaling_factor = min(max_size / width, max_size / height) | |
new_width = int(width * scaling_factor) | |
new_height = int(height * scaling_factor) | |
return image.resize((new_width, new_height), Image.LANCZOS) | |
def process_image( | |
image, | |
prompt: str, | |
scale, | |
seed: int, | |
randomize_seed: bool, | |
width: int, | |
height: int, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
clear_gpu_memory() | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
if image is None: | |
return None, seed | |
# Ensure image is a PIL Image | |
if not isinstance(image, Image.Image): | |
image = Image.fromarray(image) | |
image = resize_img(image) | |
result = ip_model.generate( | |
pil_image=image, | |
prompt=prompt, | |
scale=scale, | |
width=width, | |
height=height, | |
seed=seed | |
) | |
clear_gpu_memory() | |
return result[0], seed | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, 2000) | |
return seed | |
def create_image_sdxl( | |
image_pil, | |
prompt: str, | |
n_prompt: str, | |
scale, | |
control_scale, | |
guidance_scale: float, | |
num_inference_steps: int, | |
seed: int, | |
target: str = "Load only style blocks", | |
): | |
try: | |
image_pil.save("./tmp.png", format="PNG") | |
client = Client("Hatman/InstantStyle") | |
result = client.predict( | |
image_pil=file("./tmp.png"), | |
prompt=prompt, | |
n_prompt=n_prompt, | |
scale=1, | |
control_scale=control_scale, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
seed=seed, | |
target=target, | |
api_name="/create_image" | |
) | |
return result | |
except Exception as e: | |
print(f"Error in create_image_sdxl: {str(e)}") | |
return None | |
# UI CSS | |
css = """ | |
::-webkit-scrollbar { | |
display: none; | |
} | |
#component-0 { | |
max-width: 900px; | |
margin: 0 auto; | |
} | |
.center-markdown { | |
text-align: center !important; | |
display: flex !important; | |
justify-content: center !important; | |
width: 100% !important; | |
} | |
.gradio-row { | |
display: flex !important; | |
gap: 1rem !important; | |
flex-wrap: nowrap !important; | |
} | |
.gradio-column { | |
flex: 1 1 0 !important; | |
min-width: 0 !important; | |
} | |
""" | |
title = r""" | |
<h1>InstantStyle Flux & SDXL</h1> | |
""" | |
description = r""" | |
<p>Two different models using the IP Adapter with InstantStyle to preserve style across text-to-image generation.</p> | |
""" | |
article = r""" | |
--- | |
```bibtex | |
@article{wang2024instantstyle, | |
title={InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation}, | |
author={Wang, Haofan and Wang, Qixun and Bai, Xu and Qin, Zekui and Chen, Anthony}, | |
journal={arXiv preprint arXiv:2404.02733}, | |
year={2024} | |
} | |
``` | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown(title, elem_classes="center-markdown") | |
gr.Markdown(description, elem_classes="center-markdown") | |
with gr.Tab("FLUX"): | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=300): | |
input_image = gr.Image( | |
label="Input Image", | |
type="pil" | |
) | |
scale = gr.Slider( | |
label="Image Scale", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=0.7, | |
) | |
prompt = gr.Text( | |
label="Prompt", | |
max_lines=1, | |
placeholder="Enter your prompt", | |
) | |
run_button = gr.Button("Generate", variant="primary") | |
with gr.Column(scale=1, min_width=300): | |
result = gr.Image(label="Result") | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
run_button.click( | |
fn=process_image, | |
inputs=[ | |
input_image, | |
prompt, | |
scale, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
], | |
outputs=[result, seed], | |
) | |
with gr.Tab("SDXL"): | |
with gr.Row(): | |
with gr.Column(): | |
image_pil = gr.Image(label="Style Image", type="pil") | |
target_radio = gr.Radio( | |
["Load only style blocks", "Load only layout blocks", "Load style+layout block", "Load original IP-Adapter"], | |
value="Load only style blocks", | |
label="Style mode" | |
) | |
prompt_textbox = gr.Textbox( | |
label="Prompt", | |
value="a dog, masterpiece, best quality, high quality" | |
) | |
scale_slider_sdxl = gr.Slider( | |
minimum=0, | |
maximum=2.0, | |
step=0.01, | |
value=1.0, | |
label="Scale" | |
) | |
with gr.Accordion(open=False, label="Advanced Options"): | |
control_scale_slider = gr.Slider( | |
minimum=0, | |
maximum=1.0, | |
step=0.01, | |
value=0.5, | |
label="Controlnet conditioning scale" | |
) | |
n_prompt_textbox = gr.Textbox( | |
label="Neg Prompt", | |
value="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry" | |
) | |
guidance_scale_slider = gr.Slider( | |
minimum=1, | |
maximum=15.0, | |
step=0.01, | |
value=5.0, | |
label="guidance scale" | |
) | |
num_inference_steps_slider = gr.Slider( | |
minimum=5, | |
maximum=50.0, | |
step=1.0, | |
value=20, | |
label="num inference steps" | |
) | |
seed_slider_sdxl = gr.Slider( | |
minimum=-1000000, | |
maximum=1000000, | |
value=1, | |
step=1, | |
label="Seed Value" | |
) | |
randomize_seed_checkbox_sdxl = gr.Checkbox(label="Randomize seed", value=True) | |
generate_button = gr.Button("Generate Image", variant="primary") | |
with gr.Column(): | |
generated_image = gr.Image(label="Generated Image", show_label=False) | |
generate_button.click( | |
fn=randomize_seed_fn, | |
inputs=[seed_slider_sdxl, randomize_seed_checkbox_sdxl], | |
outputs=seed_slider_sdxl, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=create_image_sdxl, | |
inputs=[ | |
image_pil, | |
prompt_textbox, | |
n_prompt_textbox, | |
scale_slider_sdxl, | |
control_scale_slider, | |
guidance_scale_slider, | |
num_inference_steps_slider, | |
seed_slider_sdxl, | |
target_radio, | |
], | |
outputs=[generated_image] | |
) | |
gr.Markdown(article) | |
if __name__ == "__main__": | |
demo.launch( | |
share=True, | |
show_error=True, | |
quiet=False | |
) |