Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,836 Bytes
f9c76fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
import os
import torch.cuda
import gc
from gradio_client import Client, file
from pipeline_flux_ipa import FluxPipeline
from transformer_flux import FluxTransformer2DModel
from attention_processor import IPAFluxAttnProcessor2_0
from transformers import AutoProcessor, SiglipVisionModel
from infer_flux_ipa_siglip import MLPProjModel, IPAdapter
from huggingface_hub import hf_hub_download
# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
image_encoder_path = "google/siglip-so400m-patch14-384"
ipadapter_path = hf_hub_download(repo_id="InstantX/FLUX.1-dev-IP-Adapter", filename="ip-adapter.bin")
transformer = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="transformer",
torch_dtype=torch.bfloat16
)
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
transformer=transformer,
torch_dtype=torch.bfloat16
)
ip_model = IPAdapter(pipe, image_encoder_path, ipadapter_path, device="cuda", num_tokens=128)
def clear_gpu_memory():
"""Clear GPU memory and cache"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
gc.collect()
def resize_img(image, max_size=1024):
width, height = image.size
scaling_factor = min(max_size / width, max_size / height)
new_width = int(width * scaling_factor)
new_height = int(height * scaling_factor)
return image.resize((new_width, new_height), Image.LANCZOS)
@spaces.GPU
def process_image(
image,
prompt: str,
scale,
seed: int,
randomize_seed: bool,
width: int,
height: int,
progress=gr.Progress(track_tqdm=True),
):
clear_gpu_memory()
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if image is None:
return None, seed
# Ensure image is a PIL Image
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
image = resize_img(image)
result = ip_model.generate(
pil_image=image,
prompt=prompt,
scale=scale,
width=width,
height=height,
seed=seed
)
clear_gpu_memory()
return result[0], seed
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, 2000)
return seed
def create_image_sdxl(
image_pil,
prompt: str,
n_prompt: str,
scale,
control_scale,
guidance_scale: float,
num_inference_steps: int,
seed: int,
target: str = "Load only style blocks",
):
try:
image_pil.save("./tmp.png", format="PNG")
client = Client("Hatman/InstantStyle")
result = client.predict(
image_pil=file("./tmp.png"),
prompt=prompt,
n_prompt=n_prompt,
scale=1,
control_scale=control_scale,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
seed=seed,
target=target,
api_name="/create_image"
)
return result
except Exception as e:
print(f"Error in create_image_sdxl: {str(e)}")
return None
# UI CSS
css = """
::-webkit-scrollbar {
display: none;
}
#component-0 {
max-width: 900px;
margin: 0 auto;
}
.center-markdown {
text-align: center !important;
display: flex !important;
justify-content: center !important;
width: 100% !important;
}
.gradio-row {
display: flex !important;
gap: 1rem !important;
flex-wrap: nowrap !important;
}
.gradio-column {
flex: 1 1 0 !important;
min-width: 0 !important;
}
"""
title = r"""
<h1>InstantStyle Flux & SDXL</h1>
"""
description = r"""
<p>Two different models using the IP Adapter with InstantStyle to preserve style across text-to-image generation.</p>
"""
article = r"""
---
```bibtex
@article{wang2024instantstyle,
title={InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation},
author={Wang, Haofan and Wang, Qixun and Bai, Xu and Qin, Zekui and Chen, Anthony},
journal={arXiv preprint arXiv:2404.02733},
year={2024}
}
```
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(title, elem_classes="center-markdown")
gr.Markdown(description, elem_classes="center-markdown")
with gr.Tab("FLUX"):
with gr.Row():
with gr.Column(scale=1, min_width=300):
input_image = gr.Image(
label="Input Image",
type="pil"
)
scale = gr.Slider(
label="Image Scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.7,
)
prompt = gr.Text(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
run_button = gr.Button("Generate", variant="primary")
with gr.Column(scale=1, min_width=300):
result = gr.Image(label="Result")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
run_button.click(
fn=process_image,
inputs=[
input_image,
prompt,
scale,
seed,
randomize_seed,
width,
height,
],
outputs=[result, seed],
)
with gr.Tab("SDXL"):
with gr.Row():
with gr.Column():
image_pil = gr.Image(label="Style Image", type="pil")
target_radio = gr.Radio(
["Load only style blocks", "Load only layout blocks", "Load style+layout block", "Load original IP-Adapter"],
value="Load only style blocks",
label="Style mode"
)
prompt_textbox = gr.Textbox(
label="Prompt",
value="a dog, masterpiece, best quality, high quality"
)
scale_slider_sdxl = gr.Slider(
minimum=0,
maximum=2.0,
step=0.01,
value=1.0,
label="Scale"
)
with gr.Accordion(open=False, label="Advanced Options"):
control_scale_slider = gr.Slider(
minimum=0,
maximum=1.0,
step=0.01,
value=0.5,
label="Controlnet conditioning scale"
)
n_prompt_textbox = gr.Textbox(
label="Neg Prompt",
value="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry"
)
guidance_scale_slider = gr.Slider(
minimum=1,
maximum=15.0,
step=0.01,
value=5.0,
label="guidance scale"
)
num_inference_steps_slider = gr.Slider(
minimum=5,
maximum=50.0,
step=1.0,
value=20,
label="num inference steps"
)
seed_slider_sdxl = gr.Slider(
minimum=-1000000,
maximum=1000000,
value=1,
step=1,
label="Seed Value"
)
randomize_seed_checkbox_sdxl = gr.Checkbox(label="Randomize seed", value=True)
generate_button = gr.Button("Generate Image", variant="primary")
with gr.Column():
generated_image = gr.Image(label="Generated Image", show_label=False)
generate_button.click(
fn=randomize_seed_fn,
inputs=[seed_slider_sdxl, randomize_seed_checkbox_sdxl],
outputs=seed_slider_sdxl,
queue=False,
api_name=False,
).then(
fn=create_image_sdxl,
inputs=[
image_pil,
prompt_textbox,
n_prompt_textbox,
scale_slider_sdxl,
control_scale_slider,
guidance_scale_slider,
num_inference_steps_slider,
seed_slider_sdxl,
target_radio,
],
outputs=[generated_image]
)
gr.Markdown(article)
if __name__ == "__main__":
demo.launch(
share=True,
show_error=True,
quiet=False
) |