David Ko
Add default user credentials to login form
49ce704
raw
history blame
71.2 kB
# -*- coding: utf-8 -*-
# Set matplotlib config directory to avoid permission issues
import os
os.environ['MPLCONFIGDIR'] = '/tmp/matplotlib'
from flask import Flask, request, jsonify, send_from_directory, redirect, url_for, session, render_template_string, make_response
from datetime import timedelta
import torch
from PIL import Image
import numpy as np
import io
from io import BytesIO
import base64
import uuid
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
import time
from flask_cors import CORS
import json
import sys
import requests
try:
from openai import OpenAI
except Exception as _e:
OpenAI = None
try:
# LangChain for RAG answering
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
except Exception as _e:
ChatOpenAI = None
ChatPromptTemplate = None
StrOutputParser = None
from flask_login import (
LoginManager,
UserMixin,
login_user,
logout_user,
login_required,
current_user,
fresh_login_required,
login_fresh,
)
# Fix for SQLite3 version compatibility with ChromaDB
try:
import pysqlite3
sys.modules['sqlite3'] = pysqlite3
except ImportError:
print("Warning: pysqlite3 not found, using built-in sqlite3")
import chromadb
from chromadb.utils import embedding_functions
app = Flask(__name__, static_folder='static')
# ν™˜κ²½ λ³€μˆ˜μ—μ„œ λΉ„λ°€ ν‚€λ₯Ό κ°€μ Έμ˜€κ±°λ‚˜, μ—†μœΌλ©΄ μ•ˆμ „ν•œ 랜덀 ν‚€ 생성
secret_key = os.environ.get('FLASK_SECRET_KEY')
if not secret_key:
import secrets
secret_key = secrets.token_hex(16) # 32자 길이의 랜덀 16μ§„μˆ˜ λ¬Έμžμ—΄ 생성
print("WARNING: FLASK_SECRET_KEY ν™˜κ²½ λ³€μˆ˜κ°€ μ„€μ •λ˜μ§€ μ•Šμ•˜μŠ΅λ‹ˆλ‹€. 랜덀 ν‚€λ₯Ό μƒμ„±ν–ˆμŠ΅λ‹ˆλ‹€.")
print("μ„œλ²„ μž¬μ‹œμž‘ μ‹œ μ„Έμ…˜μ΄ λͺ¨λ‘ λ§Œλ£Œλ©λ‹ˆλ‹€. ν”„λ‘œλ•μ…˜ ν™˜κ²½μ—μ„œλŠ” ν™˜κ²½ λ³€μˆ˜λ₯Ό μ„€μ •ν•˜μ„Έμš”.")
app.secret_key = secret_key # μ„Έμ…˜ μ•”ν˜Έν™”λ₯Ό μœ„ν•œ λΉ„λ°€ ν‚€
app.config['CORS_HEADERS'] = 'Content-Type'
# Remember cookie (Flask-Login) β€” minimize duration to prevent auto re-login
app.config['REMEMBER_COOKIE_DURATION'] = timedelta(seconds=1)
app.config['REMEMBER_COOKIE_SECURE'] = True # Spaces uses HTTPS
app.config['REMEMBER_COOKIE_HTTPONLY'] = True
app.config['REMEMBER_COOKIE_SAMESITE'] = 'None'
# Session cookie (Flask-Session)
app.config['SESSION_COOKIE_SECURE'] = True # HTTPS
app.config['SESSION_COOKIE_HTTPONLY'] = True
app.config['SESSION_COOKIE_SAMESITE'] = 'None'
app.config['SESSION_COOKIE_PATH'] = '/'
CORS(app) # Enable CORS for all routes
# μ‹œν¬λ¦Ώ ν‚€ μ„€μ • (μ„Έμ…˜ μ•”ν˜Έν™”μ— μ‚¬μš©)
app.config['SECRET_KEY'] = os.environ.get('SECRET_KEY', 'vision_llm_agent_secret_key')
app.config['SESSION_TYPE'] = 'filesystem'
app.config['PERMANENT_SESSION_LIFETIME'] = timedelta(seconds=120) # μ„Έμ…˜ 유효 μ‹œκ°„ (2λΆ„)
app.config['SESSION_REFRESH_EACH_REQUEST'] = False # μ ˆλŒ€ 만료(둜그인 κΈ°μ€€ 2λΆ„ ν›„ 만료)
# Flask-Login μ„€μ •
login_manager = LoginManager()
login_manager.init_app(app)
login_manager.login_view = 'login'
login_manager.session_protection = 'strong'
# When authentication is required or session is not fresh, redirect to login instead of 401
login_manager.refresh_view = 'login'
@login_manager.unauthorized_handler
def handle_unauthorized():
# For non-authenticated access, send user to login
return redirect(url_for('login'))
@login_manager.needs_refresh_handler
def handle_needs_refresh():
# For non-fresh sessions (e.g., after expiry or only remember-cookie), send to login
return redirect(url_for('login'))
# μ„Έμ…˜ μ„€μ •
import tempfile
from flask_session import Session
# μž„μ‹œ 디렉토리λ₯Ό μ‚¬μš©ν•˜μ—¬ κΆŒν•œ 문제 ν•΄κ²°
session_dir = tempfile.gettempdir()
app.config['SESSION_TYPE'] = 'filesystem'
app.config['SESSION_PERMANENT'] = True
app.config['SESSION_USE_SIGNER'] = True
app.config['SESSION_FILE_DIR'] = session_dir
print(f"Using session directory: {session_dir}")
Session(app)
# μ‚¬μš©μž 클래슀 μ •μ˜
class User(UserMixin):
def __init__(self, id, username, password):
self.id = id
self.username = username
self.password = password
def get_id(self):
return str(self.id) # Flask-Login은 λ¬Έμžμ—΄ IDλ₯Ό μš”κ΅¬ν•¨
# ν…ŒμŠ€νŠΈμš© μ‚¬μš©μž (μ‹€μ œ ν™˜κ²½μ—μ„œλŠ” λ°μ΄ν„°λ² μ΄μŠ€ μ‚¬μš© ꢌμž₯)
# ν™˜κ²½ λ³€μˆ˜μ—μ„œ μ‚¬μš©μž 계정 정보λ₯Ό κ°€μ Έμ˜€κΈ° (κΈ°λ³Έκ°’ μ—†μŒ)
admin_username = os.environ.get('ADMIN_USERNAME', 'admin')
admin_password = os.environ.get('ADMIN_PASSWORD')
user_username = os.environ.get('USER_USERNAME', 'user')
user_password = os.environ.get('USER_PASSWORD')
# ν™˜κ²½ λ³€μˆ˜κ°€ μ„€μ •λ˜μ§€ μ•Šμ•˜μ„ 경우 κ²½κ³  λ©”μ‹œμ§€ 좜λ ₯
if not admin_password or not user_password:
print("ERROR: ν™˜κ²½ λ³€μˆ˜ ADMIN_PASSWORD λ˜λŠ” USER_PASSWORDκ°€ μ„€μ •λ˜μ§€ μ•Šμ•˜μŠ΅λ‹ˆλ‹€.")
print("Hugging Face Spacesμ—μ„œ λ°˜λ“œμ‹œ ν™˜κ²½ λ³€μˆ˜λ₯Ό μ„€μ •ν•΄μ•Ό ν•©λ‹ˆλ‹€.")
print("Settings > Repository secretsμ—μ„œ ν™˜κ²½ λ³€μˆ˜λ₯Ό μΆ”κ°€ν•˜μ„Έμš”.")
# ν™˜κ²½ λ³€μˆ˜κ°€ 없을 경우 μž„μ‹œ λΉ„λ°€λ²ˆν˜Έ 생성 (개발용)
import secrets
if not admin_password:
admin_password = secrets.token_hex(8) # μž„μ‹œ λΉ„λ°€λ²ˆν˜Έ 생성
print(f"WARNING: μž„μ‹œ admin λΉ„λ°€λ²ˆν˜Έκ°€ μƒμ„±λ˜μ—ˆμŠ΅λ‹ˆλ‹€: {admin_password}")
if not user_password:
user_password = secrets.token_hex(8) # μž„μ‹œ λΉ„λ°€λ²ˆν˜Έ 생성
print(f"WARNING: μž„μ‹œ user λΉ„λ°€λ²ˆν˜Έκ°€ μƒμ„±λ˜μ—ˆμŠ΅λ‹ˆλ‹€: {user_password}")
users = {
admin_username: User('1', admin_username, admin_password),
user_username: User('2', user_username, user_password)
}
# μ‚¬μš©μž λ‘œλ” ν•¨μˆ˜
@login_manager.user_loader
def load_user(user_id):
print(f"Loading user with ID: {user_id}")
# μ„Έμ…˜ 디버그 정보 좜λ ₯
print(f"Session data in user_loader: {dict(session)}")
print(f"Current request cookies: {request.cookies}")
# user_idκ°€ λ¬Έμžμ—΄λ‘œ μ „λ‹¬λ˜κΈ° λ•Œλ¬Έμ— μ‚¬μš©μž ID둜 처리
for username, user in users.items():
if str(user.id) == str(user_id): # ν™•μ‹€ν•œ λ¬Έμžμ—΄ 비ꡐ
print(f"User found: {username}, ID: {user.id}")
# μ„Έμ…˜ 정보 μ—…λ°μ΄νŠΈ
session['user_id'] = user.id
session['username'] = username
session.modified = True
return user
print(f"User not found with ID: {user_id}")
return None
# Model initialization
print("Loading models... This may take a moment.")
# Image embedding model (CLIP) for vector search
clip_model = None
clip_processor = None
try:
from transformers import CLIPProcessor, CLIPModel
# μž„μ‹œ 디렉토리 μ‚¬μš©
import tempfile
temp_dir = tempfile.gettempdir()
os.environ["TRANSFORMERS_CACHE"] = temp_dir
# CLIP λͺ¨λΈ λ‘œλ“œ (이미지 μž„λ² λ”©μš©)
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
print("CLIP model loaded successfully")
except Exception as e:
print("Error loading CLIP model:", e)
clip_model = None
clip_processor = None
# Vector DB μ΄ˆκΈ°ν™”
vector_db = None
image_collection = None
object_collection = None
try:
# ChromaDB ν΄λΌμ΄μ–ΈνŠΈ μ΄ˆκΈ°ν™” (인메λͺ¨λ¦¬ DB)
vector_db = chromadb.Client()
# μž„λ² λ”© ν•¨μˆ˜ μ„€μ •
ef = embedding_functions.DefaultEmbeddingFunction()
# 이미지 μ»¬λ ‰μ…˜ 생성
image_collection = vector_db.create_collection(
name="image_collection",
embedding_function=ef,
get_or_create=True
)
# 객체 인식 κ²°κ³Ό μ»¬λ ‰μ…˜ 생성
object_collection = vector_db.create_collection(
name="object_collection",
embedding_function=ef,
get_or_create=True
)
print("Vector DB initialized successfully")
except Exception as e:
print("Error initializing Vector DB:", e)
vector_db = None
image_collection = None
object_collection = None
# YOLOv8 model
yolo_model = None
try:
import os
from ultralytics import YOLO
# λͺ¨λΈ 파일 경둜 - μž„μ‹œ 디렉토리 μ‚¬μš©
import tempfile
temp_dir = tempfile.gettempdir()
model_path = os.path.join(temp_dir, "yolov8n.pt")
# λͺ¨λΈ 파일이 μ—†μœΌλ©΄ 직접 λ‹€μš΄λ‘œλ“œ
if not os.path.exists(model_path):
print(f"Downloading YOLOv8 model to {model_path}...")
try:
os.system(f"wget -q https://ultralytics.com/assets/yolov8n.pt -O {model_path}")
print("YOLOv8 model downloaded successfully")
except Exception as e:
print(f"Error downloading YOLOv8 model: {e}")
# λ‹€μš΄λ‘œλ“œ μ‹€νŒ¨ μ‹œ λŒ€μ²΄ URL μ‹œλ„
try:
os.system(f"wget -q https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt -O {model_path}")
print("YOLOv8 model downloaded from alternative source")
except Exception as e2:
print(f"Error downloading from alternative source: {e2}")
# λ§ˆμ§€λ§‰ λŒ€μ•ˆμœΌλ‘œ 직접 λͺ¨λΈ URL μ‚¬μš©
try:
os.system(f"curl -L https://ultralytics.com/assets/yolov8n.pt --output {model_path}")
print("YOLOv8 model downloaded using curl")
except Exception as e3:
print(f"All download attempts failed: {e3}")
# ν™˜κ²½ λ³€μˆ˜ μ„€μ • - μ„€μ • 파일 경둜 μ§€μ •
os.environ["YOLO_CONFIG_DIR"] = temp_dir
os.environ["MPLCONFIGDIR"] = temp_dir
yolo_model = YOLO(model_path) # Using the nano model for faster inference
print("YOLOv8 model loaded successfully")
except Exception as e:
print("Error loading YOLOv8 model:", e)
yolo_model = None
# DETR model (DEtection TRansformer)
detr_processor = None
detr_model = None
try:
from transformers import DetrImageProcessor, DetrForObjectDetection
detr_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
detr_model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
print("DETR model loaded successfully")
except Exception as e:
print("Error loading DETR model:", e)
detr_processor = None
detr_model = None
# ViT model
vit_processor = None
vit_model = None
try:
from transformers import ViTImageProcessor, ViTForImageClassification
vit_processor = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224")
vit_model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224")
print("ViT model loaded successfully")
except Exception as e:
print("Error loading ViT model:", e)
vit_processor = None
vit_model = None
# Get device information
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# LLM model (using an open-access model instead of Llama 4 which requires authentication)
llm_model = None
llm_tokenizer = None
try:
from transformers import AutoModelForCausalLM, AutoTokenizer
print("Loading LLM model... This may take a moment.")
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" # Using TinyLlama as an open-access alternative
llm_tokenizer = AutoTokenizer.from_pretrained(model_name)
llm_model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
# Removing options that require accelerate package
# device_map="auto",
# load_in_8bit=True
).to(device)
print("LLM model loaded successfully")
except Exception as e:
print(f"Error loading LLM model: {e}")
llm_model = None
llm_tokenizer = None
def process_llm_query(vision_results, user_query):
"""Process a query with the LLM model using vision results and user text"""
if llm_model is None or llm_tokenizer is None:
return {"error": "LLM model not available"}
# κ²°κ³Ό 데이터 μš”μ•½ (토큰 길이 μ œν•œμ„ μœ„ν•΄)
summarized_results = []
# 객체 탐지 κ²°κ³Ό μš”μ•½
if isinstance(vision_results, list):
# μ΅œλŒ€ 10개 객체만 포함
for i, obj in enumerate(vision_results[:10]):
if isinstance(obj, dict):
# ν•„μš”ν•œ μ •λ³΄λ§Œ μΆ”μΆœ
summary = {
"label": obj.get("label", "unknown"),
"confidence": obj.get("confidence", 0),
}
summarized_results.append(summary)
# Create a prompt combining vision results and user query
prompt = f"""You are an AI assistant analyzing image detection results.
Here are the objects detected in the image: {json.dumps(summarized_results, indent=2)}
User question: {user_query}
Please provide a detailed analysis based on the detected objects and the user's question.
"""
# Tokenize and generate response
try:
start_time = time.time()
# 토큰 길이 확인 및 μ œν•œ
tokens = llm_tokenizer.encode(prompt)
if len(tokens) > 1500: # μ•ˆμ „ λ§ˆμ§„ μ„€μ •
prompt = f"""You are an AI assistant analyzing image detection results.
The image contains {len(summarized_results)} detected objects.
User question: {user_query}
Please provide a general analysis based on the user's question.
"""
inputs = llm_tokenizer(prompt, return_tensors="pt").to(device)
with torch.no_grad():
output = llm_model.generate(
**inputs,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True
)
response_text = llm_tokenizer.decode(output[0], skip_special_tokens=True)
# Remove the prompt from the response
if response_text.startswith(prompt):
response_text = response_text[len(prompt):].strip()
inference_time = time.time() - start_time
return {
"response": response_text,
"performance": {
"inference_time": round(inference_time, 3),
"device": "GPU" if torch.cuda.is_available() else "CPU"
}
}
except Exception as e:
return {"error": f"Error processing LLM query: {str(e)}"}
def image_to_base64(img):
"""Convert PIL Image to base64 string"""
buffered = io.BytesIO()
img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
return img_str
def process_yolo(image):
if yolo_model is None:
return {"error": "YOLOv8 model not loaded"}
# Measure inference time
start_time = time.time()
# Convert to numpy if it's a PIL image
if isinstance(image, Image.Image):
image_np = np.array(image)
else:
image_np = image
# Run inference
results = yolo_model(image_np)
# Process results
result_image = results[0].plot()
result_image = Image.fromarray(result_image)
# Get detection information
boxes = results[0].boxes
class_names = results[0].names
# Format detection results
detections = []
for box in boxes:
class_id = int(box.cls[0].item())
class_name = class_names[class_id]
confidence = round(box.conf[0].item(), 2)
bbox = box.xyxy[0].tolist()
bbox = [round(x) for x in bbox]
detections.append({
"class": class_name,
"confidence": confidence,
"bbox": bbox
})
# Calculate inference time
inference_time = time.time() - start_time
# Add inference time and device info
device_info = "GPU" if torch.cuda.is_available() else "CPU"
return {
"image": image_to_base64(result_image),
"detections": detections,
"performance": {
"inference_time": round(inference_time, 3),
"device": device_info
}
}
def process_detr(image):
if detr_model is None or detr_processor is None:
return {"error": "DETR model not loaded"}
# Measure inference time
start_time = time.time()
# Prepare image for the model
inputs = detr_processor(images=image, return_tensors="pt")
# Run inference
with torch.no_grad():
outputs = detr_model(**inputs)
# Process results
target_sizes = torch.tensor([image.size[::-1]])
results = detr_processor.post_process_object_detection(
outputs, target_sizes=target_sizes, threshold=0.9
)[0]
# Create a copy of the image to draw on
result_image = image.copy()
fig, ax = plt.subplots(1)
ax.imshow(result_image)
# Format detection results
detections = []
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
box = [round(i) for i in box.tolist()]
class_name = detr_model.config.id2label[label.item()]
confidence = round(score.item(), 2)
# Draw rectangle
rect = Rectangle((box[0], box[1]), box[2] - box[0], box[3] - box[1],
linewidth=2, edgecolor='r', facecolor='none')
ax.add_patch(rect)
# Add label
plt.text(box[0], box[1], "{}: {}".format(class_name, confidence),
bbox=dict(facecolor='white', alpha=0.8))
detections.append({
"class": class_name,
"confidence": confidence,
"bbox": box
})
# Save figure to image
buf = io.BytesIO()
plt.tight_layout()
plt.axis('off')
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
buf.seek(0)
result_image = Image.open(buf)
plt.close(fig)
# Calculate inference time
inference_time = time.time() - start_time
# Add inference time and device info
device_info = "GPU" if torch.cuda.is_available() else "CPU"
return {
"image": image_to_base64(result_image),
"detections": detections,
"performance": {
"inference_time": round(inference_time, 3),
"device": device_info
}
}
def process_vit(image):
if vit_model is None or vit_processor is None:
return {"error": "ViT model not loaded"}
# Measure inference time
start_time = time.time()
# Prepare image for the model
inputs = vit_processor(images=image, return_tensors="pt")
# Run inference
with torch.no_grad():
outputs = vit_model(**inputs)
logits = outputs.logits
# Get the predicted class
predicted_class_idx = logits.argmax(-1).item()
prediction = vit_model.config.id2label[predicted_class_idx]
# Get top 5 predictions
probs = torch.nn.functional.softmax(logits, dim=-1)[0]
top5_prob, top5_indices = torch.topk(probs, 5)
results = []
for i, (prob, idx) in enumerate(zip(top5_prob, top5_indices)):
class_name = vit_model.config.id2label[idx.item()]
results.append({
"rank": i+1,
"class": class_name,
"probability": round(prob.item(), 3)
})
# Calculate inference time
inference_time = time.time() - start_time
# Add inference time and device info
device_info = "GPU" if torch.cuda.is_available() else "CPU"
return {
"top_predictions": results,
"performance": {
"inference_time": round(inference_time, 3),
"device": device_info
}
}
@app.route('/api/detect/yolo', methods=['POST'])
@login_required
def yolo_detect():
if 'image' not in request.files:
return jsonify({"error": "No image provided"}), 400
file = request.files['image']
image = Image.open(file.stream)
result = process_yolo(image)
return jsonify(result)
@app.route('/api/detect/detr', methods=['POST'])
@login_required
def detr_detect():
if 'image' not in request.files:
return jsonify({"error": "No image provided"}), 400
file = request.files['image']
image = Image.open(file.stream)
result = process_detr(image)
return jsonify(result)
@app.route('/api/classify/vit', methods=['POST'])
@login_required
def vit_classify():
if 'image' not in request.files:
return jsonify({"error": "No image provided"}), 400
file = request.files['image']
image = Image.open(file.stream)
result = process_vit(image)
return jsonify(result)
@app.route('/api/analyze', methods=['POST'])
@login_required
def analyze_with_llm():
# Check if required data is in the request
if not request.json:
return jsonify({"error": "No JSON data provided"}), 400
# Extract vision results and user query from request
data = request.json
if 'visionResults' not in data or 'userQuery' not in data:
return jsonify({"error": "Missing required fields: visionResults or userQuery"}), 400
vision_results = data['visionResults']
user_query = data['userQuery']
# Process the query with LLM
result = process_llm_query(vision_results, user_query)
return jsonify(result)
def generate_image_embedding(image):
"""CLIP λͺ¨λΈμ„ μ‚¬μš©ν•˜μ—¬ 이미지 μž„λ² λ”© 생성"""
if clip_model is None or clip_processor is None:
return None
try:
# 이미지 μ „μ²˜λ¦¬
inputs = clip_processor(images=image, return_tensors="pt")
# 이미지 μž„λ² λ”© 생성
with torch.no_grad():
image_features = clip_model.get_image_features(**inputs)
# μž„λ² λ”© μ •κ·œν™” 및 numpy λ°°μ—΄λ‘œ λ³€ν™˜
image_embedding = image_features.squeeze().cpu().numpy()
normalized_embedding = image_embedding / np.linalg.norm(image_embedding)
return normalized_embedding.tolist()
except Exception as e:
print(f"Error generating image embedding: {e}")
return None
@app.route('/api/similar-images', methods=['POST'])
@login_required
def find_similar_images():
"""μœ μ‚¬ 이미지 검색 API"""
if clip_model is None or clip_processor is None or image_collection is None:
return jsonify({"error": "Image embedding model or vector DB not available"})
try:
# μš”μ²­μ—μ„œ 이미지 데이터 μΆ”μΆœ
if 'image' not in request.files and 'image' not in request.form:
return jsonify({"error": "No image provided"})
if 'image' in request.files:
# 파일둜 μ—…λ‘œλ“œλœ 경우
image_file = request.files['image']
image = Image.open(image_file).convert('RGB')
else:
# base64둜 μΈμ½”λ”©λœ 경우
image_data = request.form['image']
if image_data.startswith('data:image'):
# Remove the data URL prefix if present
image_data = image_data.split(',')[1]
image = Image.open(BytesIO(base64.b64decode(image_data))).convert('RGB')
# 이미지 ID 생성 (μž„μ‹œ)
image_id = str(uuid.uuid4())
# 이미지 μž„λ² λ”© 생성
embedding = generate_image_embedding(image)
if embedding is None:
return jsonify({"error": "Failed to generate image embedding"})
# ν˜„μž¬ 이미지λ₯Ό DB에 μΆ”κ°€ (선택적)
# image_collection.add(
# ids=[image_id],
# embeddings=[embedding]
# )
# μœ μ‚¬ 이미지 검색
results = image_collection.query(
query_embeddings=[embedding],
n_results=5 # μƒμœ„ 5개 κ²°κ³Ό λ°˜ν™˜
)
# κ²°κ³Ό ν¬λ§·νŒ…
similar_images = []
if len(results['ids'][0]) > 0:
for i, img_id in enumerate(results['ids'][0]):
similar_images.append({
"id": img_id,
"distance": float(results['distances'][0][i]) if 'distances' in results else 0.0,
"metadata": results['metadatas'][0][i] if 'metadatas' in results else {}
})
return jsonify({
"query_image_id": image_id,
"similar_images": similar_images
})
except Exception as e:
print(f"Error in similar-images API: {e}")
return jsonify({"error": str(e)}), 500
@app.route('/api/add-to-collection', methods=['POST'])
@login_required
def add_to_collection():
"""이미지λ₯Ό 벑터 DB에 μΆ”κ°€ν•˜λŠ” API"""
if clip_model is None or clip_processor is None or image_collection is None:
return jsonify({"error": "Image embedding model or vector DB not available"})
try:
# μš”μ²­μ—μ„œ 이미지 데이터 μΆ”μΆœ
if 'image' not in request.files and 'image' not in request.form:
return jsonify({"error": "No image provided"})
# 메타데이터 μΆ”μΆœ
metadata = {}
if 'metadata' in request.form:
metadata = json.loads(request.form['metadata'])
# 이미지 ID (μ œκ³΅λ˜μ§€ μ•Šμ€ 경우 μžλ™ 생성)
image_id = request.form.get('id', str(uuid.uuid4()))
if 'image' in request.files:
# 파일둜 μ—…λ‘œλ“œλœ 경우
image_file = request.files['image']
image = Image.open(image_file).convert('RGB')
else:
# base64둜 μΈμ½”λ”©λœ 경우
image_data = request.form['image']
if image_data.startswith('data:image'):
# Remove the data URL prefix if present
image_data = image_data.split(',')[1]
image = Image.open(BytesIO(base64.b64decode(image_data))).convert('RGB')
# 이미지 μž„λ² λ”© 생성
embedding = generate_image_embedding(image)
if embedding is None:
return jsonify({"error": "Failed to generate image embedding"})
# 이미지 데이터λ₯Ό base64둜 μΈμ½”λ”©ν•˜μ—¬ 메타데이터에 μΆ”κ°€
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
metadata['image_data'] = img_str
# 이미지λ₯Ό DB에 μΆ”κ°€
image_collection.add(
ids=[image_id],
embeddings=[embedding],
metadatas=[metadata]
)
return jsonify({
"success": True,
"image_id": image_id,
"message": "Image added to collection"
})
except Exception as e:
print(f"Error in add-to-collection API: {e}")
return jsonify({"error": str(e)}), 500
@app.route('/api/add-detected-objects', methods=['POST'])
@login_required
def add_detected_objects():
"""객체 인식 κ²°κ³Όλ₯Ό 벑터 DB에 μΆ”κ°€ν•˜λŠ” API"""
if clip_model is None or object_collection is None:
return jsonify({"error": "Image embedding model or vector DB not available"})
try:
# 디버깅: μš”μ²­ 데이터 λ‘œκΉ…
print("[DEBUG] Received request in add-detected-objects")
# μš”μ²­μ—μ„œ 이미지와 객체 κ²€μΆœ κ²°κ³Ό 데이터 μΆ”μΆœ
data = request.json
print(f"[DEBUG] Request data keys: {list(data.keys()) if data else 'None'}")
if not data:
print("[DEBUG] Error: No data received in request")
return jsonify({"error": "No data received"})
if 'image' not in data:
print("[DEBUG] Error: 'image' key not found in request data")
return jsonify({"error": "Missing image data"})
if 'objects' not in data:
print("[DEBUG] Error: 'objects' key not found in request data")
return jsonify({"error": "Missing objects data"})
# 이미지 데이터 디버깅
print(f"[DEBUG] Image data type: {type(data['image'])}")
print(f"[DEBUG] Image data starts with: {data['image'][:50]}...") # 처음 50자만 좜λ ₯
# 객체 데이터 디버깅
print(f"[DEBUG] Objects data type: {type(data['objects'])}")
print(f"[DEBUG] Objects count: {len(data['objects']) if isinstance(data['objects'], list) else 'Not a list'}")
if isinstance(data['objects'], list) and len(data['objects']) > 0:
print(f"[DEBUG] First object keys: {list(data['objects'][0].keys()) if isinstance(data['objects'][0], dict) else 'Not a dict'}")
# 이미지 데이터 처리
image_data = data['image']
if image_data.startswith('data:image'):
image_data = image_data.split(',')[1]
image = Image.open(BytesIO(base64.b64decode(image_data))).convert('RGB')
image_width, image_height = image.size
# 이미지 ID
image_id = data.get('imageId', str(uuid.uuid4()))
# 객체 데이터 처리
objects = data['objects']
object_ids = []
object_embeddings = []
object_metadatas = []
for obj in objects:
# 객체 ID 생성
object_id = f"{image_id}_{str(uuid.uuid4())[:8]}"
# λ°”μš΄λ”© λ°•μŠ€ 정보 μΆ”μΆœ
bbox = obj.get('bbox', [])
# 리슀트 ν˜•νƒœμ˜ bbox [x1, y1, x2, y2] 처리
if isinstance(bbox, list) and len(bbox) >= 4:
x1 = bbox[0] / image_width # μ •κ·œν™”λœ μ’Œν‘œλ‘œ λ³€ν™˜
y1 = bbox[1] / image_height
x2 = bbox[2] / image_width
y2 = bbox[3] / image_height
width = x2 - x1
height = y2 - y1
# λ”•μ…”λ„ˆλ¦¬ ν˜•νƒœμ˜ bbox {'x': x, 'y': y, 'width': width, 'height': height} 처리
elif isinstance(bbox, dict):
x1 = bbox.get('x', 0)
y1 = bbox.get('y', 0)
width = bbox.get('width', 0)
height = bbox.get('height', 0)
else:
# κΈ°λ³Έκ°’ μ„€μ •
x1, y1, width, height = 0, 0, 0, 0
# λ°”μš΄λ”© λ°•μŠ€λ₯Ό 이미지 μ’Œν‘œλ‘œ λ³€ν™˜
x1_px = int(x1 * image_width)
y1_px = int(y1 * image_height)
width_px = int(width * image_width)
height_px = int(height * image_height)
# 객체 이미지 자λ₯΄κΈ°
try:
object_image = image.crop((x1_px, y1_px, x1_px + width_px, y1_px + height_px))
# μž„λ² λ”© 생성
embedding = generate_image_embedding(object_image)
if embedding is None:
continue
# 메타데이터 ꡬ성
# bboxλ₯Ό JSON λ¬Έμžμ—΄λ‘œ μ§λ ¬ν™”ν•˜μ—¬ ChromaDB 메타데이터 μ œν•œ 우회
bbox_json = json.dumps({
"x": x1,
"y": y1,
"width": width,
"height": height
})
# 객체 이미지λ₯Ό base64둜 인코딩
buffered = BytesIO()
object_image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
metadata = {
"image_id": image_id,
"class": obj.get('class', ''),
"confidence": obj.get('confidence', 0),
"bbox": bbox_json, # JSON λ¬Έμžμ—΄λ‘œ μ €μž₯
"image_data": img_str # 이미지 데이터 μΆ”κ°€
}
object_ids.append(object_id)
object_embeddings.append(embedding)
object_metadatas.append(metadata)
except Exception as e:
print(f"Error processing object: {e}")
continue
# 객체가 μ—†λŠ” 경우
if not object_ids:
return jsonify({"error": "No valid objects to add"})
# 디버깅: 메타데이터 좜λ ₯
print(f"[DEBUG] Adding {len(object_ids)} objects to vector DB")
print(f"[DEBUG] First metadata sample: {object_metadatas[0] if object_metadatas else 'None'}")
try:
# 객체듀을 DB에 μΆ”κ°€
object_collection.add(
ids=object_ids,
embeddings=object_embeddings,
metadatas=object_metadatas
)
print("[DEBUG] Successfully added objects to vector DB")
except Exception as e:
print(f"[DEBUG] Error adding to vector DB: {e}")
raise e
return jsonify({
"success": True,
"image_id": image_id,
"object_count": len(object_ids),
"object_ids": object_ids
})
except Exception as e:
print(f"Error in add-detected-objects API: {e}")
return jsonify({"error": str(e)}), 500
@app.route('/api/search-similar-objects', methods=['POST'])
@login_required
def search_similar_objects():
"""μœ μ‚¬ν•œ 객체 검색 API"""
print("[DEBUG] Received request in search-similar-objects")
if clip_model is None or object_collection is None:
print("[DEBUG] Error: Image embedding model or vector DB not available")
return jsonify({"error": "Image embedding model or vector DB not available"})
try:
# μš”μ²­ 데이터 μΆ”μΆœ
data = request.json
print(f"[DEBUG] Request data keys: {list(data.keys()) if data else 'None'}")
if not data:
print("[DEBUG] Error: Missing request data")
return jsonify({"error": "Missing request data"})
# 검색 μœ ν˜• κ²°μ •
search_type = data.get('searchType', 'image')
n_results = int(data.get('n_results', 5)) # 결과 개수
print(f"[DEBUG] Search type: {search_type}, n_results: {n_results}")
query_embedding = None
if search_type == 'image' and 'image' in data:
# μ΄λ―Έμ§€λ‘œ κ²€μƒ‰ν•˜λŠ” 경우
print("[DEBUG] Searching by image")
image_data = data['image']
if image_data.startswith('data:image'):
image_data = image_data.split(',')[1]
try:
image = Image.open(BytesIO(base64.b64decode(image_data))).convert('RGB')
query_embedding = generate_image_embedding(image)
print(f"[DEBUG] Generated image embedding: {type(query_embedding)}, shape: {len(query_embedding) if query_embedding is not None else 'None'}")
except Exception as e:
print(f"[DEBUG] Error generating image embedding: {e}")
return jsonify({"error": f"Error processing image: {str(e)}"}), 500
elif search_type == 'object' and 'objectId' in data:
# 객체 ID둜 κ²€μƒ‰ν•˜λŠ” 경우
object_id = data['objectId']
result = object_collection.get(ids=[object_id], include=["embeddings"])
if result and "embeddings" in result and len(result["embeddings"]) > 0:
query_embedding = result["embeddings"][0]
elif search_type == 'class' and 'class_name' in data:
# 클래슀 μ΄λ¦„μœΌλ‘œ κ²€μƒ‰ν•˜λŠ” 경우
print("[DEBUG] Searching by class name")
class_name = data['class_name']
print(f"[DEBUG] Class name: {class_name}")
filter_query = {"class": {"$eq": class_name}}
try:
# 클래슀둜 ν•„ν„°λ§ν•˜μ—¬ 검색
print(f"[DEBUG] Querying with filter: {filter_query}")
# Use get method instead of query for class-based filtering
results = object_collection.get(
where=filter_query,
limit=n_results,
include=["metadatas", "embeddings", "documents"]
)
print(f"[DEBUG] Query results: {results['ids'][0] if 'ids' in results and len(results['ids']) > 0 else 'No results'}")
formatted_results = format_object_results(results)
print(f"[DEBUG] Formatted results count: {len(formatted_results)}")
return jsonify({
"success": True,
"searchType": "class",
"results": formatted_results
})
except Exception as e:
print(f"[DEBUG] Error in class search: {e}")
return jsonify({"error": f"Error in class search: {str(e)}"}), 500
else:
print(f"[DEBUG] Invalid search parameters: {data}")
return jsonify({"error": "Invalid search parameters"})
if query_embedding is None:
print("[DEBUG] Error: Failed to generate query embedding")
return jsonify({"error": "Failed to generate query embedding"})
try:
# μœ μ‚¬λ„ 검색 μ‹€ν–‰
print(f"[DEBUG] Running similarity search with embedding of length {len(query_embedding)}")
results = object_collection.query(
query_embeddings=[query_embedding],
n_results=n_results,
include=["metadatas", "distances"]
)
print(f"[DEBUG] Query results: {results['ids'][0] if 'ids' in results and len(results['ids']) > 0 else 'No results'}")
formatted_results = format_object_results(results)
print(f"[DEBUG] Formatted results count: {len(formatted_results)}")
return jsonify({
"success": True,
"searchType": search_type,
"results": formatted_results
})
except Exception as e:
print(f"[DEBUG] Error in similarity search: {e}")
return jsonify({"error": f"Error in similarity search: {str(e)}"}), 500
except Exception as e:
print(f"Error in search-similar-objects API: {e}")
return jsonify({"error": str(e)}), 500
def format_object_results(results):
"""검색 κ²°κ³Ό ν¬λ§·νŒ… - ChromaDB query 및 get λ©”μ„œλ“œ κ²°κ³Ό λͺ¨λ‘ 처리"""
formatted_results = []
print(f"[DEBUG] Formatting results: {results.keys() if results else 'None'}")
if not results:
print("[DEBUG] No results to format")
return formatted_results
try:
# Check if this is a result from 'get' method (class search) or 'query' method (similarity search)
is_get_result = 'ids' in results and isinstance(results['ids'], list) and not isinstance(results['ids'][0], list) if 'ids' in results else False
if is_get_result:
# Handle results from 'get' method (flat structure)
print("[DEBUG] Processing results from get method (class search)")
if len(results['ids']) == 0:
return formatted_results
for i, obj_id in enumerate(results['ids']):
try:
# Extract object info
metadata = results['metadatas'][i] if 'metadatas' in results else {}
# Deserialize bbox if stored as JSON string
if 'bbox' in metadata and isinstance(metadata['bbox'], str):
try:
metadata['bbox'] = json.loads(metadata['bbox'])
except:
pass # Keep as is if deserialization fails
result_item = {
"id": obj_id,
"metadata": metadata
}
# No distance in get results
# Check if image data is already in metadata
if 'image_data' not in metadata:
print(f"[DEBUG] Image data not found in metadata for object {obj_id}")
else:
print(f"[DEBUG] Image data found in metadata for object {obj_id}")
formatted_results.append(result_item)
except Exception as e:
print(f"[DEBUG] Error formatting get result {i}: {e}")
else:
# Handle results from 'query' method (nested structure)
print("[DEBUG] Processing results from query method (similarity search)")
if 'ids' not in results or len(results['ids']) == 0 or len(results['ids'][0]) == 0:
return formatted_results
for i, obj_id in enumerate(results['ids'][0]):
try:
# Extract object info
metadata = results['metadatas'][0][i] if 'metadatas' in results and len(results['metadatas']) > 0 else {}
# Deserialize bbox if stored as JSON string
if 'bbox' in metadata and isinstance(metadata['bbox'], str):
try:
metadata['bbox'] = json.loads(metadata['bbox'])
except:
pass # Keep as is if deserialization fails
result_item = {
"id": obj_id,
"metadata": metadata
}
if 'distances' in results and len(results['distances']) > 0:
result_item["distance"] = float(results['distances'][0][i])
# Check if image data is already in metadata
if 'image_data' not in metadata:
try:
# Try to get original image via image ID
image_id = metadata.get('image_id')
if image_id:
print(f"[DEBUG] Image data not found in metadata for object {obj_id} with image_id {image_id}")
except Exception as e:
print(f"[DEBUG] Error checking image data for result {i}: {e}")
else:
print(f"[DEBUG] Image data found in metadata for object {obj_id}")
formatted_results.append(result_item)
except Exception as e:
print(f"[DEBUG] Error formatting query result {i}: {e}")
except Exception as e:
print(f"[DEBUG] Error in format_object_results: {e}")
return formatted_results
# 둜그인 νŽ˜μ΄μ§€ HTML ν…œν”Œλ¦Ώ
LOGIN_TEMPLATE = '''
<!DOCTYPE html>
<html lang="ko">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Vision LLM Agent - 둜그인</title>
<style>
body {
font-family: Arial, sans-serif;
background-color: #f5f5f5;
display: flex;
justify-content: center;
align-items: center;
height: 100vh;
margin: 0;
}
.login-container {
background-color: white;
padding: 2rem;
border-radius: 8px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
width: 100%;
max-width: 400px;
}
h1 {
text-align: center;
color: #4a6cf7;
margin-bottom: 1.5rem;
}
.form-group {
margin-bottom: 1rem;
}
label {
display: block;
margin-bottom: 0.5rem;
font-weight: bold;
}
input {
width: 100%;
padding: 0.75rem;
border: 1px solid #ddd;
border-radius: 4px;
font-size: 1rem;
}
button {
width: 100%;
padding: 0.75rem;
background-color: #4a6cf7;
color: white;
border: none;
border-radius: 4px;
font-size: 1rem;
cursor: pointer;
margin-top: 1rem;
}
button:hover {
background-color: #3a5cd8;
}
.error-message {
color: #e74c3c;
margin-top: 1rem;
text-align: center;
}
</style>
</head>
<body>
<div class="login-container">
<h1>Vision LLM Agent</h1>
<form action="/login" method="post" autocomplete="off">
<!-- hidden dummy fields to discourage Chrome autofill -->
<input type="text" name="fakeusernameremembered" style="display:none" tabindex="-1" autocomplete="off">
<input type="password" name="fakepasswordremembered" style="display:none" tabindex="-1" autocomplete="off">
<div class="form-group">
<label for="username">Username</label>
<input type="text" id="username" name="username" value="user" required autocomplete="username" autocapitalize="none" autocorrect="off" spellcheck="false">
</div>
<div class="form-group">
<label for="password">Password</label>
<input type="password" id="password" name="password" value="user123" placeholder="******" required autocomplete="current-password" autocapitalize="none" autocorrect="off" spellcheck="false">
</div>
<button type="submit">Login</button>
{% if error %}
<p class="error-message">{{ error }}</p>
{% endif %}
</form>
</div>
</body>
</html>
'''
@app.route('/login', methods=['GET', 'POST'])
def login():
# 이미 둜그인된 μ‚¬μš©μžλŠ” 메인 νŽ˜μ΄μ§€λ‘œ λ¦¬λ””λ ‰μ…˜
if current_user.is_authenticated and login_fresh():
print(f"User already authenticated and fresh as: {current_user.username}, redirecting to index")
return redirect('/index.html')
elif current_user.is_authenticated and not login_fresh():
# Remember-cookie μƒνƒœ λ“± λΉ„-ν”„λ ˆμ‹œ μ„Έμ…˜μ΄λ©΄ 둜그인 νŽ˜μ΄μ§€λ₯Ό λ³΄μ—¬μ„œ 재인증 μœ λ„
print("User authenticated but session not fresh; showing login page for reauthentication")
error = None
if request.method == 'POST':
username = request.form.get('username')
password = request.form.get('password')
print(f"Login attempt: username={username}")
if username in users and users[username].password == password:
# 둜그인 성곡 μ‹œ μ„Έμ…˜μ— μ‚¬μš©μž 정보 μ €μž₯
user = users[username]
login_user(user, remember=False) # 2λΆ„ μ„Έμ…˜ 만료λ₯Ό μœ„ν•΄ remember λΉ„ν™œμ„±ν™”
session['user_id'] = user.id
session['username'] = username
session.permanent = True
session.modified = True # μ„Έμ…˜ λ³€κ²½ 사항 μ¦‰μ‹œ 적용
print(f"Login successful for user: {username}, ID: {user.id}")
# λ¦¬λ””λ ‰μ…˜ 처리
next_page = request.args.get('next')
if next_page and next_page.startswith('/') and next_page != '/login':
print(f"Redirecting to: {next_page}")
return redirect(next_page)
print("Redirecting to index.html")
return redirect(url_for('serve_index_html'))
else:
error = 'Invalid username or password'
print(f"Login failed: {error}")
return render_template_string(LOGIN_TEMPLATE, error=error)
@app.route('/logout')
def logout():
logout_user()
# Clear server-side session fully
try:
session.clear()
except Exception as e:
print(f"[DEBUG] Error clearing session on logout: {e}")
# Ensure remember cookie is removed by setting an expired cookie
resp = redirect(url_for('login'))
try:
resp.delete_cookie(
key='remember_token',
path='/',
samesite='None',
secure=True,
httponly=True,
)
except Exception as e:
print(f"[DEBUG] Error deleting remember_token cookie: {e}")
return resp
# 정적 파일 μ„œλΉ™μ„ μœ„ν•œ 라우트 (둜그인 λΆˆν•„μš”)
@app.route('/static/<path:filename>')
def serve_static(filename):
print(f"Serving static file: {filename}")
resp = send_from_directory(app.static_folder, filename)
# Prevent caching of static assets to reflect latest frontend changes
resp.headers['Cache-Control'] = 'no-store, no-cache, must-revalidate, max-age=0'
resp.headers['Pragma'] = 'no-cache'
resp.headers['Expires'] = '0'
return resp
# 인덱슀 HTML 직접 μ„œλΉ™ (둜그인 ν•„μš”)
@app.route('/index.html')
def serve_index_html():
# μ„Έμ…˜ 및 μΏ ν‚€ 디버그 정보
print(f"Request to /index.html - Session data: {dict(session)}")
print(f"Request to /index.html - Cookies: {request.cookies}")
print(f"Request to /index.html - User authenticated: {current_user.is_authenticated}")
# 인증 확인 (fresh session only)
if not current_user.is_authenticated or not login_fresh():
print("User not authenticated, redirecting to login")
return redirect(url_for('login'))
print(f"Serving index.html for authenticated user: {current_user.username} (ID: {current_user.id})")
# μ„Έμ…˜ μƒνƒœ 디버그
print(f"Session data: user_id={session.get('user_id')}, username={session.get('username')}, is_permanent={session.get('permanent', False)}")
# μ„Έμ…˜ 만료λ₯Ό μ˜λ„λŒ€λ‘œ μœ μ§€ν•˜κΈ° μœ„ν•΄ μ—¬κΈ°μ„œ μ„Έμ…˜μ„ κ°±μ‹ ν•˜μ§€ μ•ŠμŠ΅λ‹ˆλ‹€.
# 주의: μ„Έμ…˜μ— μ“°κΈ°(λ˜λŠ” session.modified=True)λŠ” Flask-Sessionμ—μ„œ λ§Œλ£Œμ‹œκ°„μ„ μ—°μž₯ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
# index.html을 읽어 ν•˜νŠΈλΉ„νŠΈ 슀크립트λ₯Ό μ£Όμž…
index_path = os.path.join(app.static_folder, 'index.html')
try:
with open(index_path, 'r', encoding='utf-8') as f:
html = f.read()
except Exception as e:
print(f"[DEBUG] Failed to read index.html for injection: {e}")
return send_from_directory(app.static_folder, 'index.html')
heartbeat_script = """
<script>
(function(){
// 1) μ„Έμ…˜ μƒνƒœ μ£ΌκΈ° 체크 (λ§Œλ£Œμ‹œ 둜그인으둜)
function checkSession(){
fetch('/api/status', {credentials: 'include', redirect: 'manual'}).then(function(res){
var redirected = res.redirected || (res.url && res.url.indexOf('/login') !== -1);
if(res.status !== 200 || redirected){
window.location.href = '/login';
}
}).catch(function(){
// λ„€νŠΈμ›Œν¬ 였λ₯˜ 등도 둜그인으둜 μœ λ„
window.location.href = '/login';
});
}
checkSession();
setInterval(checkSession, 30000);
// 2) μ‚¬μš©μž λΉ„ν™œμ„±(λ¬΄λ™μž‘) 2λΆ„ ν›„ μžλ™ λ‘œκ·Έμ•„μ›ƒ
var idleMs = 120000; // 2λΆ„
var idleTimer;
function triggerLogout(){
// μ„œλ²„ μ„Έμ…˜ 정리 ν›„ 둜그인 ν™”λ©΄μœΌλ‘œ
window.location.href = '/logout';
}
function resetIdle(){
if (idleTimer) clearTimeout(idleTimer);
idleTimer = setTimeout(triggerLogout, idleMs);
}
['click','mousemove','keydown','scroll','touchstart','visibilitychange'].forEach(function(evt){
window.addEventListener(evt, resetIdle, {passive:true});
});
resetIdle();
})();
</script>
"""
try:
if '</body>' in html:
html = html.replace('</body>', heartbeat_script + '</body>')
else:
html = html + heartbeat_script
except Exception as e:
print(f"[DEBUG] Failed to inject heartbeat script: {e}")
return send_from_directory(app.static_folder, 'index.html')
resp = make_response(html)
# Prevent sensitive pages from being cached
resp.headers['Cache-Control'] = 'no-store, no-cache, must-revalidate, max-age=0'
resp.headers['Pragma'] = 'no-cache'
resp.headers['Expires'] = '0'
return resp
# Static files should be accessible without login requirements
@app.route('/static/<path:filename>')
def static_files(filename):
print(f"Serving static file: {filename}")
# Two possible locations after CRA build copy:
# 1) Top-level: static/<filename>
# 2) Nested build: static/static/<filename>
top_level_path = os.path.join(app.static_folder, filename)
nested_dir = os.path.join(app.static_folder, 'static')
nested_path = os.path.join(nested_dir, filename)
try:
if os.path.exists(top_level_path):
return send_from_directory(app.static_folder, filename)
elif os.path.exists(nested_path):
# Serve from nested build directory
return send_from_directory(nested_dir, filename)
else:
# Fallback: try as-is (may help in some edge cases)
return send_from_directory(app.static_folder, filename)
except Exception as e:
print(f"[DEBUG] Error serving static file '{filename}': {e}")
# Final fallback to avoid leaking stack traces
return ('Not Found', 404)
# Add explicit handlers for JS files that are failing
@app.route('/static/js/<path:filename>')
def static_js_files(filename):
print(f"Serving JS file: {filename}")
# Try top-level static/js and nested static/static/js
top_js_dir = os.path.join(app.static_folder, 'js')
nested_js_dir = os.path.join(app.static_folder, 'static', 'js')
top_js_path = os.path.join(top_js_dir, filename)
nested_js_path = os.path.join(nested_js_dir, filename)
try:
if os.path.exists(top_js_path):
return send_from_directory(top_js_dir, filename)
elif os.path.exists(nested_js_path):
return send_from_directory(nested_js_dir, filename)
else:
# As a fallback, let the generic static handler try
return static_files(os.path.join('js', filename))
except Exception as e:
print(f"[DEBUG] Error serving JS file '{filename}': {e}")
return ('Not Found', 404)
# κΈ°λ³Έ 경둜 및 기타 경둜 처리 (둜그인 ν•„μš”)
@app.route('/', defaults={'path': ''}, methods=['GET'])
@app.route('/<path:path>', methods=['GET'])
@fresh_login_required
def serve_react(path):
"""Serve React frontend"""
print(f"Serving React frontend for path: {path}, user: {current_user.username if current_user.is_authenticated else 'not authenticated'}")
# 정적 파일 μ²˜λ¦¬λŠ” 이제 별도 λΌμš°νŠΈμ—μ„œ 처리
if path != "" and os.path.exists(os.path.join(app.static_folder, path)):
resp = send_from_directory(app.static_folder, path)
resp.headers['Cache-Control'] = 'no-store, no-cache, must-revalidate, max-age=0'
resp.headers['Pragma'] = 'no-cache'
resp.headers['Expires'] = '0'
return resp
else:
# React μ•±μ˜ index.html μ„œλΉ™ (ν•˜νŠΈλΉ„νŠΈ 슀크립트 μ£Όμž…)
index_path = os.path.join(app.static_folder, 'index.html')
try:
with open(index_path, 'r', encoding='utf-8') as f:
html = f.read()
except Exception as e:
print(f"[DEBUG] Failed to read index.html for injection (serve_react): {e}")
resp = send_from_directory(app.static_folder, 'index.html')
resp.headers['Cache-Control'] = 'no-store, no-cache, must-revalidate, max-age=0'
resp.headers['Pragma'] = 'no-cache'
resp.headers['Expires'] = '0'
return resp
heartbeat_script = """
<script>
(function(){
// 1) μ„Έμ…˜ μƒνƒœ μ£ΌκΈ° 체크 (λ§Œλ£Œμ‹œ 둜그인으둜)
function checkSession(){
fetch('/api/status', {credentials: 'include', redirect: 'manual'}).then(function(res){
var redirected = res.redirected || (res.url && res.url.indexOf('/login') !== -1);
if(res.status !== 200 || redirected){
window.location.href = '/login';
}
}).catch(function(){
window.location.href = '/login';
});
}
checkSession();
setInterval(checkSession, 30000);
// 2) μ‚¬μš©μž λΉ„ν™œμ„±(λ¬΄λ™μž‘) 2λΆ„ ν›„ μžλ™ λ‘œκ·Έμ•„μ›ƒ
var idleMs = 120000; // 2λΆ„
var idleTimer;
function triggerLogout(){
window.location.href = '/logout';
}
function resetIdle(){
if (idleTimer) clearTimeout(idleTimer);
idleTimer = setTimeout(triggerLogout, idleMs);
}
['click','mousemove','keydown','scroll','touchstart','visibilitychange'].forEach(function(evt){
window.addEventListener(evt, resetIdle, {passive:true});
});
resetIdle();
})();
</script>
"""
try:
if '</body>' in html:
html = html.replace('</body>', heartbeat_script + '</body>')
else:
html = html + heartbeat_script
except Exception as e:
print(f"[DEBUG] Failed to inject heartbeat script (serve_react): {e}")
resp = send_from_directory(app.static_folder, 'index.html')
resp.headers['Cache-Control'] = 'no-store, no-cache, must-revalidate, max-age=0'
resp.headers['Pragma'] = 'no-cache'
resp.headers['Expires'] = '0'
return resp
resp = make_response(html)
resp.headers['Cache-Control'] = 'no-store, no-cache, must-revalidate, max-age=0'
resp.headers['Pragma'] = 'no-cache'
resp.headers['Expires'] = '0'
return resp
@app.route('/similar-images', methods=['GET'])
@fresh_login_required
def similar_images_page():
"""Serve similar images search page"""
resp = send_from_directory(app.static_folder, 'similar-images.html')
resp.headers['Cache-Control'] = 'no-store, no-cache, must-revalidate, max-age=0'
resp.headers['Pragma'] = 'no-cache'
resp.headers['Expires'] = '0'
return resp
@app.route('/object-detection-search', methods=['GET'])
@fresh_login_required
def object_detection_search_page():
"""Serve object detection search page"""
resp = send_from_directory(app.static_folder, 'object-detection-search.html')
resp.headers['Cache-Control'] = 'no-store, no-cache, must-revalidate, max-age=0'
resp.headers['Pragma'] = 'no-cache'
resp.headers['Expires'] = '0'
return resp
@app.route('/model-vector-db', methods=['GET'])
@fresh_login_required
def model_vector_db_page():
"""Serve model vector DB UI page"""
resp = send_from_directory(app.static_folder, 'model-vector-db.html')
resp.headers['Cache-Control'] = 'no-store, no-cache, must-revalidate, max-age=0'
resp.headers['Pragma'] = 'no-cache'
resp.headers['Expires'] = '0'
return resp
@app.route('/openai-chat', methods=['GET'])
@fresh_login_required
def openai_chat_page():
"""Serve OpenAI chat UI page"""
resp = send_from_directory(app.static_folder, 'openai-chat.html')
resp.headers['Cache-Control'] = 'no-store, no-cache, must-revalidate, max-age=0'
resp.headers['Pragma'] = 'no-cache'
resp.headers['Expires'] = '0'
return resp
@app.route('/api/openai/chat', methods=['POST'])
@fresh_login_required
def openai_chat_api():
"""Forward chat request to OpenAI Chat Completions API.
Expects JSON: { prompt: string, model?: string, api_key?: string, system?: string }
Uses OPENAI_API_KEY from environment if api_key not provided.
"""
try:
data = request.get_json(force=True)
except Exception:
return jsonify({"error": "Invalid JSON body"}), 400
prompt = (data or {}).get('prompt', '').strip()
model = (data or {}).get('model') or os.environ.get('OPENAI_MODEL', 'gpt-4')
system = (data or {}).get('system') or 'You are a helpful assistant.'
api_key = (data or {}).get('api_key') or os.environ.get('OPENAI_API_KEY')
if not prompt:
return jsonify({"error": "Missing 'prompt'"}), 400
if not api_key:
return jsonify({"error": "Missing OpenAI API key. Provide in request or set OPENAI_API_KEY env."}), 400
# Prefer official Python SDK if available
if OpenAI is None:
return jsonify({"error": "OpenAI Python package not installed on server"}), 500
try:
start = time.time()
client = OpenAI(api_key=api_key)
# Perform chat completion
chat = client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": system},
{"role": "user", "content": prompt},
],
)
latency = round(time.time() - start, 3)
except Exception as e:
# Log detailed error for diagnostics
try:
import traceback
traceback.print_exc()
except Exception:
pass
err_msg = str(e)
print(f"[OpenAI Chat Error] model={model} err={err_msg}")
return jsonify({
"error": "OpenAI SDK call failed",
"detail": err_msg,
"model": model
}), 502
try:
content = chat.choices[0].message.content if chat and chat.choices else ''
usage = getattr(chat, 'usage', None)
usage = usage.model_dump() if hasattr(usage, 'model_dump') else (usage or {})
except Exception as e:
return jsonify({"error": f"Failed to parse SDK response: {str(e)}"}), 500
return jsonify({
'response': content,
'model': model,
'usage': usage,
'latency_sec': latency
})
@app.route('/api/vision-rag/query', methods=['POST'])
@login_required
def vision_rag_query():
"""Vision RAG endpoint.
Expects JSON with one of the following query modes and a user question:
- { userQuery, searchType: 'image', image, n_results? }
- { userQuery, searchType: 'object', objectId, n_results? }
- { userQuery, searchType: 'class', class_name, n_results? }
Returns: { answer, retrieved: [...], model, latency_sec }
"""
if ChatOpenAI is None:
return jsonify({"error": "LangChain not installed on server"}), 500
data = request.get_json(silent=True) or {}
# Debug: log incoming payload keys and basic info (without sensitive data)
try:
print("[VRAG][REQ] keys=", list(data.keys()))
print("[VRAG][REQ] has_api_key=", bool(data.get('api_key') or os.environ.get('OPENAI_API_KEY')))
_img = data.get('image')
if isinstance(_img, str):
print("[VRAG][REQ] image_str_len=", len(_img), "prefix=", _img[:30] if len(_img) > 30 else _img)
print("[VRAG][REQ] searchType=", data.get('searchType'), "objectId=", data.get('objectId'), "class_name=", data.get('class_name'))
except Exception as _e:
print("[VRAG][WARN] failed to log request payload:", _e)
user_query = (data.get('userQuery') or '').strip()
if not user_query:
return jsonify({"error": "Missing 'userQuery'"}), 400
api_key = data.get('api_key') or os.environ.get('OPENAI_API_KEY')
if not api_key:
return jsonify({"error": "Missing OpenAI API key. Provide in request or set OPENAI_API_KEY env."}), 400
search_type = data.get('searchType', 'image')
n_results = int(data.get('n_results', 5))
print(f"[VRAG] user_query='{user_query}' | search_type={search_type} | n_results={n_results}")
# Build query embedding or filtered fetch similar to /api/search-similar-objects
results = None
try:
if search_type == 'image' and 'image' in data:
image_data = data['image']
if isinstance(image_data, str) and image_data.startswith('data:image'):
image_data = image_data.split(',')[1]
image = Image.open(BytesIO(base64.b64decode(image_data))).convert('RGB')
query_embedding = generate_image_embedding(image)
if query_embedding is None:
return jsonify({"error": "Failed to generate image embedding"}), 500
results = object_collection.query(
query_embeddings=[query_embedding],
n_results=n_results,
include=["metadatas", "distances"]
) if object_collection is not None else None
elif search_type == 'object' and 'objectId' in data:
obj_id = data['objectId']
base = object_collection.get(ids=[obj_id], include=["embeddings"]) if object_collection is not None else None
emb = base["embeddings"][0] if base and "embeddings" in base and base["embeddings"] else None
if emb is None:
return jsonify({"error": "objectId not found or has no embedding"}), 400
results = object_collection.query(
query_embeddings=[emb],
n_results=n_results,
include=["metadatas", "distances"]
)
elif search_type == 'class' and 'class_name' in data:
filter_query = {"class": {"$eq": data['class_name']}}
results = object_collection.get(
where=filter_query,
limit=n_results,
include=["metadatas", "embeddings", "documents"]
) if object_collection is not None else None
else:
return jsonify({"error": "Invalid search parameters"}), 400
except Exception as e:
return jsonify({"error": f"Retrieval failed: {str(e)}"}), 500
# Format results using existing helper
formatted = format_object_results(results) if results else []
# Debug: log retrieval summary
try:
cnt = len(formatted)
print(f"[VRAG][RETRIEVE] items={cnt}")
if cnt:
print("[VRAG][RETRIEVE] first_item=", {
'id': formatted[0].get('id'),
'distance': formatted[0].get('distance'),
'meta_keys': list((formatted[0].get('metadata') or {}).keys())
})
except Exception as _e:
print("[VRAG][WARN] failed to log retrieval summary:", _e)
# Build concise context for LLM
def _shorten(md):
try:
bbox = md.get('bbox') if isinstance(md, dict) else None
if isinstance(bbox, dict):
bbox = {k: round(float(v), 3) for k, v in bbox.items() if isinstance(v, (int, float))}
return {
'image_id': md.get('image_id'),
'class': md.get('class'),
'confidence': md.get('confidence'),
'bbox': bbox,
}
except Exception:
return {k: md.get(k) for k in ('image_id', 'class', 'confidence') if k in md}
context_items = []
for r in formatted[:n_results]:
md = r.get('metadata', {})
item = {
'id': r.get('id'),
'distance': r.get('distance'),
'meta': _shorten(md)
}
context_items.append(item)
# Compose prompt
system_text = (
"You are a vision assistant. Use ONLY the provided detected object context to answer. "
"Be concise and state uncertainty if context is insufficient."
)
# Provide the minimal JSON-like context to the model
context_text = json.dumps(context_items, ensure_ascii=False, indent=2)
user_text = f"User question: {user_query}\n\nDetected context (top {len(context_items)}):\n{context_text}"
# Debug: show compact context preview
try:
print("[VRAG][CTX] context_items_count=", len(context_items))
if context_items:
print("[VRAG][CTX] sample=", json.dumps(context_items[0], ensure_ascii=False))
except Exception as _e:
print("[VRAG][WARN] failed to log context:", _e)
# Attempt multimodal call (text + top-1 image) if available; otherwise fallback to text-only LangChain.
answer = None
model_used = None
try:
start = time.time()
top_data_url = None
try:
if formatted:
md0 = (formatted[0] or {}).get('metadata') or {}
img_b64 = md0.get('image_data')
if isinstance(img_b64, str) and len(img_b64) > 50:
# Construct data URL without logging raw base64
top_data_url = 'data:image/jpeg;base64,' + img_b64
except Exception:
top_data_url = None
# Prefer OpenAI SDK for multimodal if available and we have an image
if OpenAI is not None and top_data_url is not None:
client = OpenAI(api_key=api_key)
model_used = os.environ.get('OPENAI_MODEL', 'gpt-4o')
chat = client.chat.completions.create(
model=model_used,
messages=[
{"role": "system", "content": system_text},
{
"role": "user",
"content": [
{"type": "text", "text": user_text},
{"type": "image_url", "image_url": {"url": top_data_url}},
],
},
],
)
answer = chat.choices[0].message.content if chat and chat.choices else ''
else:
# Fallback to existing LangChain text-only flow
llm = ChatOpenAI(api_key=api_key, model=os.environ.get('OPENAI_MODEL', 'gpt-4o'))
prompt = ChatPromptTemplate.from_messages([
("system", system_text),
("human", "{input}")
])
chain = prompt | llm | StrOutputParser()
answer = chain.invoke({"input": user_text})
model_used = getattr(llm, 'model', None)
latency = round(time.time() - start, 3)
except Exception as e:
return jsonify({"error": f"LLM call failed: {str(e)}"}), 502
return jsonify({
"answer": answer,
"retrieved": context_items,
"model": model_used,
"latency_sec": latency
})
@app.route('/api/status', methods=['GET'])
@fresh_login_required
def status():
return jsonify({
"status": "online",
"models": {
"yolo": yolo_model is not None,
"detr": detr_model is not None and detr_processor is not None,
"vit": vit_model is not None and vit_processor is not None
},
"device": "GPU" if torch.cuda.is_available() else "CPU",
"user": current_user.username
})
# Root route is now handled by serve_react function
# This route is removed to prevent conflicts
@app.route('/index')
@login_required
def index_page():
# /index κ²½λ‘œλŠ” index.html둜 λ¦¬λ””λ ‰μ…˜
print("Index route redirecting to index.html")
return redirect('/index.html')
if __name__ == "__main__":
# ν—ˆκΉ…νŽ˜μ΄μŠ€ Spaceμ—μ„œλŠ” PORT ν™˜κ²½ λ³€μˆ˜λ₯Ό μ‚¬μš©ν•©λ‹ˆλ‹€
port = int(os.environ.get("PORT", 7860))
app.run(debug=False, host='0.0.0.0', port=port)