File size: 71,227 Bytes
8ed5ac1
 
 
 
 
630e9fb
8fdf1e4
8ed5ac1
 
 
 
 
 
 
 
 
 
 
 
 
df15537
 
 
 
 
637dbbd
 
 
 
 
 
 
 
 
630e9fb
 
 
 
 
 
 
 
 
 
8ed5ac1
 
 
 
 
 
 
 
 
 
 
 
e6821c4
 
 
 
 
 
 
 
8fdf1e4
630e9fb
 
d1b4a04
8fdf1e4
d1b4a04
 
 
 
 
 
8ed5ac1
 
a2e8511
 
51bb097
b4662d6
 
a2e8511
 
 
 
 
51bb097
a2e8511
6de8fab
 
 
 
 
 
 
 
 
 
 
 
 
7ac53fe
bbbd5f6
7ac53fe
bbbd5f6
 
 
7ac53fe
 
 
bbbd5f6
 
7ac53fe
 
a2e8511
 
 
 
 
 
a44b826
 
 
a2e8511
 
e6821c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2e8511
e6821c4
 
a2e8511
 
a44b826
a2e8511
 
a44b826
dfdf7e7
 
 
 
 
a44b826
dfdf7e7
 
 
 
 
 
a2e8511
a44b826
a2e8511
 
8ed5ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2e8511
8ed5ac1
 
 
 
 
 
 
 
 
 
 
a2e8511
8ed5ac1
 
 
 
 
 
 
 
 
 
 
a2e8511
8ed5ac1
 
 
 
 
 
 
 
 
 
 
a2e8511
8ed5ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2e8511
8ed5ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2e8511
8ed5ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2e8511
8ed5ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2e8511
8ed5ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2e8511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4662d6
 
 
 
a2e8511
a8dbc72
49ce704
a2e8511
 
a8dbc72
49ce704
a2e8511
a8dbc72
a2e8511
 
 
 
 
 
 
 
 
 
 
a44b826
337664f
 
7ac53fe
337664f
 
 
a44b826
a2e8511
 
 
 
 
a8dbc72
 
a2e8511
51bb097
 
ac9962b
51bb097
 
 
8fdf1e4
51bb097
a44b826
51bb097
 
a2e8511
913f3b4
a44b826
a8dbc72
7ac53fe
d1b4a04
a2e8511
a8dbc72
 
a2e8511
 
 
 
 
 
b4662d6
 
 
 
 
630e9fb
 
 
 
 
 
 
 
 
 
 
 
 
a2e8511
7ac53fe
 
 
 
0e9cdf3
 
 
 
 
 
7ac53fe
 
 
 
dfdf7e7
 
 
 
 
630e9fb
 
8fdf1e4
 
 
dfdf7e7
8fdf1e4
 
dfdf7e7
d5410d2
 
dfdf7e7
630e9fb
 
 
 
 
 
 
 
 
 
 
 
4ba39ac
630e9fb
cc735d7
 
 
630e9fb
 
 
 
 
 
 
 
 
4ba39ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
630e9fb
 
 
 
 
 
 
 
 
 
 
 
 
 
b4662d6
 
 
 
 
7ac53fe
6d8a023
 
 
 
c4ce70b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d8a023
 
 
 
 
c4ce70b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d8a023
7ac53fe
8ed5ac1
 
630e9fb
8ed5ac1
 
64663bd
7ac53fe
 
b4662d6
 
 
 
 
8ed5ac1
630e9fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ba39ac
630e9fb
cc735d7
 
 
630e9fb
 
 
 
 
 
 
 
4ba39ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
630e9fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4662d6
 
 
 
8ed5ac1
 
630e9fb
8ed5ac1
 
b4662d6
 
 
 
 
8ed5ac1
 
630e9fb
8ed5ac1
 
b4662d6
 
 
 
 
8ed5ac1
 
630e9fb
8ed5ac1
 
b4662d6
 
 
 
 
8ed5ac1
df15537
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e865931
df15537
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bcde88
4971aea
df15537
 
 
 
 
 
 
 
 
4971aea
 
 
 
 
 
 
 
 
 
 
 
 
df15537
 
 
 
 
 
 
 
 
 
 
 
 
 
 
637dbbd
 
 
 
 
 
 
 
 
 
 
 
 
 
5c810f6
 
 
 
 
 
 
 
 
 
 
637dbbd
 
 
 
 
 
 
 
 
 
5c810f6
637dbbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c810f6
 
 
 
 
 
 
 
 
 
 
 
637dbbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c810f6
 
 
 
 
 
 
 
675ab86
 
 
637dbbd
 
675ab86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
637dbbd
 
 
 
 
 
 
675ab86
637dbbd
 
 
8ed5ac1
630e9fb
8ed5ac1
 
 
 
 
 
 
 
a2e8511
 
8ed5ac1
 
68634f6
 
a44b826
a2e8511
 
a44b826
7ac53fe
 
 
8ed5ac1
89707b0
8ed5ac1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
# -*- coding: utf-8 -*-
# Set matplotlib config directory to avoid permission issues
import os
os.environ['MPLCONFIGDIR'] = '/tmp/matplotlib'

from flask import Flask, request, jsonify, send_from_directory, redirect, url_for, session, render_template_string, make_response
from datetime import timedelta
import torch
from PIL import Image
import numpy as np
import io
from io import BytesIO
import base64
import uuid
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
import time
from flask_cors import CORS
import json
import sys
import requests
try:
    from openai import OpenAI
except Exception as _e:
    OpenAI = None
try:
    # LangChain for RAG answering
    from langchain_openai import ChatOpenAI
    from langchain_core.prompts import ChatPromptTemplate
    from langchain_core.output_parsers import StrOutputParser
except Exception as _e:
    ChatOpenAI = None
    ChatPromptTemplate = None
    StrOutputParser = None
from flask_login import (
    LoginManager,
    UserMixin,
    login_user,
    logout_user,
    login_required,
    current_user,
    fresh_login_required,
    login_fresh,
)

# Fix for SQLite3 version compatibility with ChromaDB
try:
    import pysqlite3
    sys.modules['sqlite3'] = pysqlite3
except ImportError:
    print("Warning: pysqlite3 not found, using built-in sqlite3")

import chromadb
from chromadb.utils import embedding_functions

app = Flask(__name__, static_folder='static')
# ํ™˜๊ฒฝ ๋ณ€์ˆ˜์—์„œ ๋น„๋ฐ€ ํ‚ค๋ฅผ ๊ฐ€์ ธ์˜ค๊ฑฐ๋‚˜, ์—†์œผ๋ฉด ์•ˆ์ „ํ•œ ๋žœ๋ค ํ‚ค ์ƒ์„ฑ
secret_key = os.environ.get('FLASK_SECRET_KEY')
if not secret_key:
    import secrets
    secret_key = secrets.token_hex(16)  # 32์ž ๊ธธ์ด์˜ ๋žœ๋ค 16์ง„์ˆ˜ ๋ฌธ์ž์—ด ์ƒ์„ฑ
    print("WARNING: FLASK_SECRET_KEY ํ™˜๊ฒฝ ๋ณ€์ˆ˜๊ฐ€ ์„ค์ •๋˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค. ๋žœ๋ค ํ‚ค๋ฅผ ์ƒ์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค.")
    print("์„œ๋ฒ„ ์žฌ์‹œ์ž‘ ์‹œ ์„ธ์…˜์ด ๋ชจ๋‘ ๋งŒ๋ฃŒ๋ฉ๋‹ˆ๋‹ค. ํ”„๋กœ๋•์…˜ ํ™˜๊ฒฝ์—์„œ๋Š” ํ™˜๊ฒฝ ๋ณ€์ˆ˜๋ฅผ ์„ค์ •ํ•˜์„ธ์š”.")
app.secret_key = secret_key  # ์„ธ์…˜ ์•”ํ˜ธํ™”๋ฅผ ์œ„ํ•œ ๋น„๋ฐ€ ํ‚ค
app.config['CORS_HEADERS'] = 'Content-Type'
# Remember cookie (Flask-Login) โ€” minimize duration to prevent auto re-login
app.config['REMEMBER_COOKIE_DURATION'] = timedelta(seconds=1)
app.config['REMEMBER_COOKIE_SECURE'] = True  # Spaces uses HTTPS
app.config['REMEMBER_COOKIE_HTTPONLY'] = True
app.config['REMEMBER_COOKIE_SAMESITE'] = 'None'
# Session cookie (Flask-Session)
app.config['SESSION_COOKIE_SECURE'] = True  # HTTPS
app.config['SESSION_COOKIE_HTTPONLY'] = True
app.config['SESSION_COOKIE_SAMESITE'] = 'None'
app.config['SESSION_COOKIE_PATH'] = '/'
CORS(app)  # Enable CORS for all routes

# ์‹œํฌ๋ฆฟ ํ‚ค ์„ค์ • (์„ธ์…˜ ์•”ํ˜ธํ™”์— ์‚ฌ์šฉ)
app.config['SECRET_KEY'] = os.environ.get('SECRET_KEY', 'vision_llm_agent_secret_key')
app.config['SESSION_TYPE'] = 'filesystem'
app.config['PERMANENT_SESSION_LIFETIME'] = timedelta(seconds=120)  # ์„ธ์…˜ ์œ ํšจ ์‹œ๊ฐ„ (2๋ถ„)
app.config['SESSION_REFRESH_EACH_REQUEST'] = False  # ์ ˆ๋Œ€ ๋งŒ๋ฃŒ(๋กœ๊ทธ์ธ ๊ธฐ์ค€ 2๋ถ„ ํ›„ ๋งŒ๋ฃŒ)

# Flask-Login ์„ค์ •
login_manager = LoginManager()
login_manager.init_app(app)
login_manager.login_view = 'login'
login_manager.session_protection = 'strong'

# When authentication is required or session is not fresh, redirect to login instead of 401
login_manager.refresh_view = 'login'

@login_manager.unauthorized_handler
def handle_unauthorized():
    # For non-authenticated access, send user to login
    return redirect(url_for('login'))

@login_manager.needs_refresh_handler
def handle_needs_refresh():
    # For non-fresh sessions (e.g., after expiry or only remember-cookie), send to login
    return redirect(url_for('login'))

# ์„ธ์…˜ ์„ค์ •
import tempfile
from flask_session import Session

# ์ž„์‹œ ๋””๋ ‰ํ† ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ถŒํ•œ ๋ฌธ์ œ ํ•ด๊ฒฐ
session_dir = tempfile.gettempdir()
app.config['SESSION_TYPE'] = 'filesystem'
app.config['SESSION_PERMANENT'] = True
app.config['SESSION_USE_SIGNER'] = True
app.config['SESSION_FILE_DIR'] = session_dir
print(f"Using session directory: {session_dir}")
Session(app)

# ์‚ฌ์šฉ์ž ํด๋ž˜์Šค ์ •์˜
class User(UserMixin):
    def __init__(self, id, username, password):
        self.id = id
        self.username = username
        self.password = password
    
    def get_id(self):
        return str(self.id)  # Flask-Login์€ ๋ฌธ์ž์—ด ID๋ฅผ ์š”๊ตฌํ•จ

# ํ…Œ์ŠคํŠธ์šฉ ์‚ฌ์šฉ์ž (์‹ค์ œ ํ™˜๊ฒฝ์—์„œ๋Š” ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ์‚ฌ์šฉ ๊ถŒ์žฅ)
# ํ™˜๊ฒฝ ๋ณ€์ˆ˜์—์„œ ์‚ฌ์šฉ์ž ๊ณ„์ • ์ •๋ณด๋ฅผ ๊ฐ€์ ธ์˜ค๊ธฐ (๊ธฐ๋ณธ๊ฐ’ ์—†์Œ)
admin_username = os.environ.get('ADMIN_USERNAME', 'admin')
admin_password = os.environ.get('ADMIN_PASSWORD')
user_username = os.environ.get('USER_USERNAME', 'user')
user_password = os.environ.get('USER_PASSWORD')

# ํ™˜๊ฒฝ ๋ณ€์ˆ˜๊ฐ€ ์„ค์ •๋˜์ง€ ์•Š์•˜์„ ๊ฒฝ์šฐ ๊ฒฝ๊ณ  ๋ฉ”์‹œ์ง€ ์ถœ๋ ฅ
if not admin_password or not user_password:
    print("ERROR: ํ™˜๊ฒฝ ๋ณ€์ˆ˜ ADMIN_PASSWORD ๋˜๋Š” USER_PASSWORD๊ฐ€ ์„ค์ •๋˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.")
    print("Hugging Face Spaces์—์„œ ๋ฐ˜๋“œ์‹œ ํ™˜๊ฒฝ ๋ณ€์ˆ˜๋ฅผ ์„ค์ •ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.")
    print("Settings > Repository secrets์—์„œ ํ™˜๊ฒฝ ๋ณ€์ˆ˜๋ฅผ ์ถ”๊ฐ€ํ•˜์„ธ์š”.")
    # ํ™˜๊ฒฝ ๋ณ€์ˆ˜๊ฐ€ ์—†์„ ๊ฒฝ์šฐ ์ž„์‹œ ๋น„๋ฐ€๋ฒˆํ˜ธ ์ƒ์„ฑ (๊ฐœ๋ฐœ์šฉ)
    import secrets
    if not admin_password:
        admin_password = secrets.token_hex(8)  # ์ž„์‹œ ๋น„๋ฐ€๋ฒˆํ˜ธ ์ƒ์„ฑ
        print(f"WARNING: ์ž„์‹œ admin ๋น„๋ฐ€๋ฒˆํ˜ธ๊ฐ€ ์ƒ์„ฑ๋˜์—ˆ์Šต๋‹ˆ๋‹ค: {admin_password}")
    if not user_password:
        user_password = secrets.token_hex(8)  # ์ž„์‹œ ๋น„๋ฐ€๋ฒˆํ˜ธ ์ƒ์„ฑ
        print(f"WARNING: ์ž„์‹œ user ๋น„๋ฐ€๋ฒˆํ˜ธ๊ฐ€ ์ƒ์„ฑ๋˜์—ˆ์Šต๋‹ˆ๋‹ค: {user_password}")

users = {
    admin_username: User('1', admin_username, admin_password),
    user_username: User('2', user_username, user_password)
}

# ์‚ฌ์šฉ์ž ๋กœ๋” ํ•จ์ˆ˜
@login_manager.user_loader
def load_user(user_id):
    print(f"Loading user with ID: {user_id}")
    # ์„ธ์…˜ ๋””๋ฒ„๊ทธ ์ •๋ณด ์ถœ๋ ฅ
    print(f"Session data in user_loader: {dict(session)}")
    print(f"Current request cookies: {request.cookies}")
    
    # user_id๊ฐ€ ๋ฌธ์ž์—ด๋กœ ์ „๋‹ฌ๋˜๊ธฐ ๋•Œ๋ฌธ์— ์‚ฌ์šฉ์ž ID๋กœ ์ฒ˜๋ฆฌ
    for username, user in users.items():
        if str(user.id) == str(user_id):  # ํ™•์‹คํ•œ ๋ฌธ์ž์—ด ๋น„๊ต
            print(f"User found: {username}, ID: {user.id}")
            # ์„ธ์…˜ ์ •๋ณด ์—…๋ฐ์ดํŠธ
            session['user_id'] = user.id
            session['username'] = username
            session.modified = True
            return user
    print(f"User not found with ID: {user_id}")
    return None

# Model initialization
print("Loading models... This may take a moment.")

# Image embedding model (CLIP) for vector search
clip_model = None
clip_processor = None
try:
    from transformers import CLIPProcessor, CLIPModel
    
    # ์ž„์‹œ ๋””๋ ‰ํ† ๋ฆฌ ์‚ฌ์šฉ
    import tempfile
    temp_dir = tempfile.gettempdir()
    os.environ["TRANSFORMERS_CACHE"] = temp_dir
    
    # CLIP ๋ชจ๋ธ ๋กœ๋“œ (์ด๋ฏธ์ง€ ์ž„๋ฒ ๋”ฉ์šฉ)
    clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
    clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
    
    print("CLIP model loaded successfully")
except Exception as e:
    print("Error loading CLIP model:", e)
    clip_model = None
    clip_processor = None

# Vector DB ์ดˆ๊ธฐํ™”
vector_db = None
image_collection = None
object_collection = None
try:
    # ChromaDB ํด๋ผ์ด์–ธํŠธ ์ดˆ๊ธฐํ™” (์ธ๋ฉ”๋ชจ๋ฆฌ DB)
    vector_db = chromadb.Client()
    
    # ์ž„๋ฒ ๋”ฉ ํ•จ์ˆ˜ ์„ค์ •
    ef = embedding_functions.DefaultEmbeddingFunction()
    
    # ์ด๋ฏธ์ง€ ์ปฌ๋ ‰์…˜ ์ƒ์„ฑ
    image_collection = vector_db.create_collection(
        name="image_collection",
        embedding_function=ef,
        get_or_create=True
    )
    
    # ๊ฐ์ฒด ์ธ์‹ ๊ฒฐ๊ณผ ์ปฌ๋ ‰์…˜ ์ƒ์„ฑ
    object_collection = vector_db.create_collection(
        name="object_collection",
        embedding_function=ef,
        get_or_create=True
    )
    
    print("Vector DB initialized successfully")
except Exception as e:
    print("Error initializing Vector DB:", e)
    vector_db = None
    image_collection = None
    object_collection = None

# YOLOv8 model
yolo_model = None
try:
    import os
    from ultralytics import YOLO
    
    # ๋ชจ๋ธ ํŒŒ์ผ ๊ฒฝ๋กœ - ์ž„์‹œ ๋””๋ ‰ํ† ๋ฆฌ ์‚ฌ์šฉ
    import tempfile
    temp_dir = tempfile.gettempdir()
    model_path = os.path.join(temp_dir, "yolov8n.pt")
    
    # ๋ชจ๋ธ ํŒŒ์ผ์ด ์—†์œผ๋ฉด ์ง์ ‘ ๋‹ค์šด๋กœ๋“œ
    if not os.path.exists(model_path):
        print(f"Downloading YOLOv8 model to {model_path}...")
        try:
            os.system(f"wget -q https://ultralytics.com/assets/yolov8n.pt -O {model_path}")
            print("YOLOv8 model downloaded successfully")
        except Exception as e:
            print(f"Error downloading YOLOv8 model: {e}")
            # ๋‹ค์šด๋กœ๋“œ ์‹คํŒจ ์‹œ ๋Œ€์ฒด URL ์‹œ๋„
            try:
                os.system(f"wget -q https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt -O {model_path}")
                print("YOLOv8 model downloaded from alternative source")
            except Exception as e2:
                print(f"Error downloading from alternative source: {e2}")
                # ๋งˆ์ง€๋ง‰ ๋Œ€์•ˆ์œผ๋กœ ์ง์ ‘ ๋ชจ๋ธ URL ์‚ฌ์šฉ
                try:
                    os.system(f"curl -L https://ultralytics.com/assets/yolov8n.pt --output {model_path}")
                    print("YOLOv8 model downloaded using curl")
                except Exception as e3:
                    print(f"All download attempts failed: {e3}")
    
    # ํ™˜๊ฒฝ ๋ณ€์ˆ˜ ์„ค์ • - ์„ค์ • ํŒŒ์ผ ๊ฒฝ๋กœ ์ง€์ •
    os.environ["YOLO_CONFIG_DIR"] = temp_dir
    os.environ["MPLCONFIGDIR"] = temp_dir
    
    yolo_model = YOLO(model_path)  # Using the nano model for faster inference
    print("YOLOv8 model loaded successfully")
except Exception as e:
    print("Error loading YOLOv8 model:", e)
    yolo_model = None

# DETR model (DEtection TRansformer)
detr_processor = None
detr_model = None
try:
    from transformers import DetrImageProcessor, DetrForObjectDetection
    
    detr_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
    detr_model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
    
    print("DETR model loaded successfully")
except Exception as e:
    print("Error loading DETR model:", e)
    detr_processor = None
    detr_model = None

# ViT model
vit_processor = None
vit_model = None
try:
    from transformers import ViTImageProcessor, ViTForImageClassification
    vit_processor = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224")
    vit_model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224")
    print("ViT model loaded successfully")
except Exception as e:
    print("Error loading ViT model:", e)
    vit_processor = None
    vit_model = None

# Get device information
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# LLM model (using an open-access model instead of Llama 4 which requires authentication)
llm_model = None
llm_tokenizer = None
try:
    from transformers import AutoModelForCausalLM, AutoTokenizer
    
    print("Loading LLM model... This may take a moment.")
    model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"  # Using TinyLlama as an open-access alternative
    
    llm_tokenizer = AutoTokenizer.from_pretrained(model_name)
    llm_model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype=torch.float16,
        # Removing options that require accelerate package
        # device_map="auto",
        # load_in_8bit=True
    ).to(device)
    print("LLM model loaded successfully")
except Exception as e:
    print(f"Error loading LLM model: {e}")
    llm_model = None
    llm_tokenizer = None

def process_llm_query(vision_results, user_query):
    """Process a query with the LLM model using vision results and user text"""
    if llm_model is None or llm_tokenizer is None:
        return {"error": "LLM model not available"}
    
    # ๊ฒฐ๊ณผ ๋ฐ์ดํ„ฐ ์š”์•ฝ (ํ† ํฐ ๊ธธ์ด ์ œํ•œ์„ ์œ„ํ•ด)
    summarized_results = []
    
    # ๊ฐ์ฒด ํƒ์ง€ ๊ฒฐ๊ณผ ์š”์•ฝ
    if isinstance(vision_results, list):
        # ์ตœ๋Œ€ 10๊ฐœ ๊ฐ์ฒด๋งŒ ํฌํ•จ
        for i, obj in enumerate(vision_results[:10]):
            if isinstance(obj, dict):
                # ํ•„์š”ํ•œ ์ •๋ณด๋งŒ ์ถ”์ถœ
                summary = {
                    "label": obj.get("label", "unknown"),
                    "confidence": obj.get("confidence", 0),
                }
                summarized_results.append(summary)
    
    # Create a prompt combining vision results and user query
    prompt = f"""You are an AI assistant analyzing image detection results. 
    Here are the objects detected in the image: {json.dumps(summarized_results, indent=2)}
    
    User question: {user_query}
    
    Please provide a detailed analysis based on the detected objects and the user's question.
    """
    
    # Tokenize and generate response
    try:
        start_time = time.time()
        
        # ํ† ํฐ ๊ธธ์ด ํ™•์ธ ๋ฐ ์ œํ•œ
        tokens = llm_tokenizer.encode(prompt)
        if len(tokens) > 1500:  # ์•ˆ์ „ ๋งˆ์ง„ ์„ค์ •
            prompt = f"""You are an AI assistant analyzing image detection results.
            The image contains {len(summarized_results)} detected objects.
            
            User question: {user_query}
            
            Please provide a general analysis based on the user's question.
            """
        
        inputs = llm_tokenizer(prompt, return_tensors="pt").to(device)
        with torch.no_grad():
            output = llm_model.generate(
                **inputs,
                max_new_tokens=512,
                temperature=0.7,
                top_p=0.9,
                do_sample=True
            )
        
        response_text = llm_tokenizer.decode(output[0], skip_special_tokens=True)
        
        # Remove the prompt from the response
        if response_text.startswith(prompt):
            response_text = response_text[len(prompt):].strip()
        
        inference_time = time.time() - start_time
        
        return {
            "response": response_text,
            "performance": {
                "inference_time": round(inference_time, 3),
                "device": "GPU" if torch.cuda.is_available() else "CPU"
            }
        }
    except Exception as e:
        return {"error": f"Error processing LLM query: {str(e)}"}

def image_to_base64(img):
    """Convert PIL Image to base64 string"""
    buffered = io.BytesIO()
    img.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
    return img_str

def process_yolo(image):
    if yolo_model is None:
        return {"error": "YOLOv8 model not loaded"}
    
    # Measure inference time
    start_time = time.time()
    
    # Convert to numpy if it's a PIL image
    if isinstance(image, Image.Image):
        image_np = np.array(image)
    else:
        image_np = image
        
    # Run inference
    results = yolo_model(image_np)
    
    # Process results
    result_image = results[0].plot()
    result_image = Image.fromarray(result_image)
    
    # Get detection information
    boxes = results[0].boxes
    class_names = results[0].names
    
    # Format detection results
    detections = []
    for box in boxes:
        class_id = int(box.cls[0].item())
        class_name = class_names[class_id]
        confidence = round(box.conf[0].item(), 2)
        bbox = box.xyxy[0].tolist()
        bbox = [round(x) for x in bbox]
        detections.append({
            "class": class_name,
            "confidence": confidence,
            "bbox": bbox
        })
    
    # Calculate inference time
    inference_time = time.time() - start_time
    
    # Add inference time and device info
    device_info = "GPU" if torch.cuda.is_available() else "CPU"
    
    return {
        "image": image_to_base64(result_image),
        "detections": detections,
        "performance": {
            "inference_time": round(inference_time, 3),
            "device": device_info
        }
    }

def process_detr(image):
    if detr_model is None or detr_processor is None:
        return {"error": "DETR model not loaded"}
    
    # Measure inference time
    start_time = time.time()
    
    # Prepare image for the model
    inputs = detr_processor(images=image, return_tensors="pt")
    
    # Run inference
    with torch.no_grad():
        outputs = detr_model(**inputs)
    
    # Process results
    target_sizes = torch.tensor([image.size[::-1]])
    results = detr_processor.post_process_object_detection(
        outputs, target_sizes=target_sizes, threshold=0.9
    )[0]
    
    # Create a copy of the image to draw on
    result_image = image.copy()
    fig, ax = plt.subplots(1)
    ax.imshow(result_image)
    
    # Format detection results
    detections = []
    for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
        box = [round(i) for i in box.tolist()]
        class_name = detr_model.config.id2label[label.item()]
        confidence = round(score.item(), 2)
        
        # Draw rectangle
        rect = Rectangle((box[0], box[1]), box[2] - box[0], box[3] - box[1],
                         linewidth=2, edgecolor='r', facecolor='none')
        ax.add_patch(rect)
        
        # Add label
        plt.text(box[0], box[1], "{}: {}".format(class_name, confidence), 
                 bbox=dict(facecolor='white', alpha=0.8))
        
        detections.append({
            "class": class_name,
            "confidence": confidence,
            "bbox": box
        })
    
    # Save figure to image
    buf = io.BytesIO()
    plt.tight_layout()
    plt.axis('off')
    plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
    buf.seek(0)
    result_image = Image.open(buf)
    plt.close(fig)
    
    # Calculate inference time
    inference_time = time.time() - start_time
    
    # Add inference time and device info
    device_info = "GPU" if torch.cuda.is_available() else "CPU"
    
    return {
        "image": image_to_base64(result_image),
        "detections": detections,
        "performance": {
            "inference_time": round(inference_time, 3),
            "device": device_info
        }
    }

def process_vit(image):
    if vit_model is None or vit_processor is None:
        return {"error": "ViT model not loaded"}
    
    # Measure inference time
    start_time = time.time()
    
    # Prepare image for the model
    inputs = vit_processor(images=image, return_tensors="pt")
    
    # Run inference
    with torch.no_grad():
        outputs = vit_model(**inputs)
        logits = outputs.logits
    
    # Get the predicted class
    predicted_class_idx = logits.argmax(-1).item()
    prediction = vit_model.config.id2label[predicted_class_idx]
    
    # Get top 5 predictions
    probs = torch.nn.functional.softmax(logits, dim=-1)[0]
    top5_prob, top5_indices = torch.topk(probs, 5)
    
    results = []
    for i, (prob, idx) in enumerate(zip(top5_prob, top5_indices)):
        class_name = vit_model.config.id2label[idx.item()]
        results.append({
            "rank": i+1,
            "class": class_name,
            "probability": round(prob.item(), 3)
        })
    
    # Calculate inference time
    inference_time = time.time() - start_time
    
    # Add inference time and device info
    device_info = "GPU" if torch.cuda.is_available() else "CPU"
    
    return {
        "top_predictions": results,
        "performance": {
            "inference_time": round(inference_time, 3),
            "device": device_info
        }
    }

@app.route('/api/detect/yolo', methods=['POST'])
@login_required
def yolo_detect():
    if 'image' not in request.files:
        return jsonify({"error": "No image provided"}), 400
    
    file = request.files['image']
    image = Image.open(file.stream)
    
    result = process_yolo(image)
    return jsonify(result)

@app.route('/api/detect/detr', methods=['POST'])
@login_required
def detr_detect():
    if 'image' not in request.files:
        return jsonify({"error": "No image provided"}), 400
    
    file = request.files['image']
    image = Image.open(file.stream)
    
    result = process_detr(image)
    return jsonify(result)

@app.route('/api/classify/vit', methods=['POST'])
@login_required
def vit_classify():
    if 'image' not in request.files:
        return jsonify({"error": "No image provided"}), 400
    
    file = request.files['image']
    image = Image.open(file.stream)
    
    result = process_vit(image)
    return jsonify(result)

@app.route('/api/analyze', methods=['POST'])
@login_required
def analyze_with_llm():
    # Check if required data is in the request
    if not request.json:
        return jsonify({"error": "No JSON data provided"}), 400
    
    # Extract vision results and user query from request
    data = request.json
    if 'visionResults' not in data or 'userQuery' not in data:
        return jsonify({"error": "Missing required fields: visionResults or userQuery"}), 400
    
    vision_results = data['visionResults']
    user_query = data['userQuery']

    # Process the query with LLM
    result = process_llm_query(vision_results, user_query)

    return jsonify(result)

def generate_image_embedding(image):
    """CLIP ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋ฏธ์ง€ ์ž„๋ฒ ๋”ฉ ์ƒ์„ฑ"""
    if clip_model is None or clip_processor is None:
        return None

    try:
        # ์ด๋ฏธ์ง€ ์ „์ฒ˜๋ฆฌ
        inputs = clip_processor(images=image, return_tensors="pt")

        # ์ด๋ฏธ์ง€ ์ž„๋ฒ ๋”ฉ ์ƒ์„ฑ
        with torch.no_grad():
            image_features = clip_model.get_image_features(**inputs)

        # ์ž„๋ฒ ๋”ฉ ์ •๊ทœํ™” ๋ฐ numpy ๋ฐฐ์—ด๋กœ ๋ณ€ํ™˜
        image_embedding = image_features.squeeze().cpu().numpy()
        normalized_embedding = image_embedding / np.linalg.norm(image_embedding)

        return normalized_embedding.tolist()
    except Exception as e:
        print(f"Error generating image embedding: {e}")
        return None

@app.route('/api/similar-images', methods=['POST'])
@login_required
def find_similar_images():
    """์œ ์‚ฌ ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰ API"""
    if clip_model is None or clip_processor is None or image_collection is None:
        return jsonify({"error": "Image embedding model or vector DB not available"})

    try:
        # ์š”์ฒญ์—์„œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ ์ถ”์ถœ
        if 'image' not in request.files and 'image' not in request.form:
            return jsonify({"error": "No image provided"})

        if 'image' in request.files:
            # ํŒŒ์ผ๋กœ ์—…๋กœ๋“œ๋œ ๊ฒฝ์šฐ
            image_file = request.files['image']
            image = Image.open(image_file).convert('RGB')
        else:
            # base64๋กœ ์ธ์ฝ”๋”ฉ๋œ ๊ฒฝ์šฐ
            image_data = request.form['image']
            if image_data.startswith('data:image'):
                # Remove the data URL prefix if present
                image_data = image_data.split(',')[1]
            image = Image.open(BytesIO(base64.b64decode(image_data))).convert('RGB')

        # ์ด๋ฏธ์ง€ ID ์ƒ์„ฑ (์ž„์‹œ)
        image_id = str(uuid.uuid4())

        # ์ด๋ฏธ์ง€ ์ž„๋ฒ ๋”ฉ ์ƒ์„ฑ
        embedding = generate_image_embedding(image)
        if embedding is None:
            return jsonify({"error": "Failed to generate image embedding"})

        # ํ˜„์žฌ ์ด๋ฏธ์ง€๋ฅผ DB์— ์ถ”๊ฐ€ (์„ ํƒ์ )
        # image_collection.add(
        #    ids=[image_id],
        #    embeddings=[embedding]
        # )

        # ์œ ์‚ฌ ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰
        results = image_collection.query(
            query_embeddings=[embedding],
            n_results=5  # ์ƒ์œ„ 5๊ฐœ ๊ฒฐ๊ณผ ๋ฐ˜ํ™˜
        )

        # ๊ฒฐ๊ณผ ํฌ๋งทํŒ…
        similar_images = []
        if len(results['ids'][0]) > 0:
            for i, img_id in enumerate(results['ids'][0]):
                similar_images.append({
                    "id": img_id,
                    "distance": float(results['distances'][0][i]) if 'distances' in results else 0.0,
                    "metadata": results['metadatas'][0][i] if 'metadatas' in results else {}
                })

        return jsonify({
            "query_image_id": image_id,
            "similar_images": similar_images
        })

    except Exception as e:
        print(f"Error in similar-images API: {e}")
        return jsonify({"error": str(e)}), 500

@app.route('/api/add-to-collection', methods=['POST'])
@login_required
def add_to_collection():
    """์ด๋ฏธ์ง€๋ฅผ ๋ฒกํ„ฐ DB์— ์ถ”๊ฐ€ํ•˜๋Š” API"""
    if clip_model is None or clip_processor is None or image_collection is None:
        return jsonify({"error": "Image embedding model or vector DB not available"})

    try:
        # ์š”์ฒญ์—์„œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ ์ถ”์ถœ
        if 'image' not in request.files and 'image' not in request.form:
            return jsonify({"error": "No image provided"})

        # ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ ์ถ”์ถœ
        metadata = {}
        if 'metadata' in request.form:
            metadata = json.loads(request.form['metadata'])

        # ์ด๋ฏธ์ง€ ID (์ œ๊ณต๋˜์ง€ ์•Š์€ ๊ฒฝ์šฐ ์ž๋™ ์ƒ์„ฑ)
        image_id = request.form.get('id', str(uuid.uuid4()))

        if 'image' in request.files:
            # ํŒŒ์ผ๋กœ ์—…๋กœ๋“œ๋œ ๊ฒฝ์šฐ
            image_file = request.files['image']
            image = Image.open(image_file).convert('RGB')
        else:
            # base64๋กœ ์ธ์ฝ”๋”ฉ๋œ ๊ฒฝ์šฐ
            image_data = request.form['image']
            if image_data.startswith('data:image'):
                # Remove the data URL prefix if present
                image_data = image_data.split(',')[1]
            image = Image.open(BytesIO(base64.b64decode(image_data))).convert('RGB')

        # ์ด๋ฏธ์ง€ ์ž„๋ฒ ๋”ฉ ์ƒ์„ฑ
        embedding = generate_image_embedding(image)
        if embedding is None:
            return jsonify({"error": "Failed to generate image embedding"})
            
        # ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๋ฅผ base64๋กœ ์ธ์ฝ”๋”ฉํ•˜์—ฌ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ์— ์ถ”๊ฐ€
        buffered = BytesIO()
        image.save(buffered, format="JPEG")
        img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
        metadata['image_data'] = img_str

        # ์ด๋ฏธ์ง€๋ฅผ DB์— ์ถ”๊ฐ€
        image_collection.add(
            ids=[image_id],
            embeddings=[embedding],
            metadatas=[metadata]
        )

        return jsonify({
            "success": True,
            "image_id": image_id,
            "message": "Image added to collection"
        })

    except Exception as e:
        print(f"Error in add-to-collection API: {e}")
        return jsonify({"error": str(e)}), 500

@app.route('/api/add-detected-objects', methods=['POST'])
@login_required
def add_detected_objects():
    """๊ฐ์ฒด ์ธ์‹ ๊ฒฐ๊ณผ๋ฅผ ๋ฒกํ„ฐ DB์— ์ถ”๊ฐ€ํ•˜๋Š” API"""
    if clip_model is None or object_collection is None:
        return jsonify({"error": "Image embedding model or vector DB not available"})

    try:
        # ๋””๋ฒ„๊น…: ์š”์ฒญ ๋ฐ์ดํ„ฐ ๋กœ๊น…
        print("[DEBUG] Received request in add-detected-objects")
        
        # ์š”์ฒญ์—์„œ ์ด๋ฏธ์ง€์™€ ๊ฐ์ฒด ๊ฒ€์ถœ ๊ฒฐ๊ณผ ๋ฐ์ดํ„ฐ ์ถ”์ถœ
        data = request.json
        print(f"[DEBUG] Request data keys: {list(data.keys()) if data else 'None'}")
        
        if not data:
            print("[DEBUG] Error: No data received in request")
            return jsonify({"error": "No data received"})
            
        if 'image' not in data:
            print("[DEBUG] Error: 'image' key not found in request data")
            return jsonify({"error": "Missing image data"})
            
        if 'objects' not in data:
            print("[DEBUG] Error: 'objects' key not found in request data")
            return jsonify({"error": "Missing objects data"})
        
        # ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ ๋””๋ฒ„๊น…
        print(f"[DEBUG] Image data type: {type(data['image'])}")
        print(f"[DEBUG] Image data starts with: {data['image'][:50]}...") # ์ฒ˜์Œ 50์ž๋งŒ ์ถœ๋ ฅ
        
        # ๊ฐ์ฒด ๋ฐ์ดํ„ฐ ๋””๋ฒ„๊น…
        print(f"[DEBUG] Objects data type: {type(data['objects'])}")
        print(f"[DEBUG] Objects count: {len(data['objects']) if isinstance(data['objects'], list) else 'Not a list'}")
        if isinstance(data['objects'], list) and len(data['objects']) > 0:
            print(f"[DEBUG] First object keys: {list(data['objects'][0].keys()) if isinstance(data['objects'][0], dict) else 'Not a dict'}")
        
        # ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ
        image_data = data['image']
        if image_data.startswith('data:image'):
            image_data = image_data.split(',')[1]
        
        image = Image.open(BytesIO(base64.b64decode(image_data))).convert('RGB')
        image_width, image_height = image.size
        
        # ์ด๋ฏธ์ง€ ID
        image_id = data.get('imageId', str(uuid.uuid4()))
        
        # ๊ฐ์ฒด ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ
        objects = data['objects']
        object_ids = []
        object_embeddings = []
        object_metadatas = []
        
        for obj in objects:
            # ๊ฐ์ฒด ID ์ƒ์„ฑ
            object_id = f"{image_id}_{str(uuid.uuid4())[:8]}"
            
            # ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค ์ •๋ณด ์ถ”์ถœ
            bbox = obj.get('bbox', [])
            
            # ๋ฆฌ์ŠคํŠธ ํ˜•ํƒœ์˜ bbox [x1, y1, x2, y2] ์ฒ˜๋ฆฌ
            if isinstance(bbox, list) and len(bbox) >= 4:
                x1 = bbox[0] / image_width  # ์ •๊ทœํ™”๋œ ์ขŒํ‘œ๋กœ ๋ณ€ํ™˜
                y1 = bbox[1] / image_height
                x2 = bbox[2] / image_width
                y2 = bbox[3] / image_height
                width = x2 - x1
                height = y2 - y1
            # ๋”•์…”๋„ˆ๋ฆฌ ํ˜•ํƒœ์˜ bbox {'x': x, 'y': y, 'width': width, 'height': height} ์ฒ˜๋ฆฌ
            elif isinstance(bbox, dict):
                x1 = bbox.get('x', 0)
                y1 = bbox.get('y', 0)
                width = bbox.get('width', 0)
                height = bbox.get('height', 0)
            else:
                # ๊ธฐ๋ณธ๊ฐ’ ์„ค์ •
                x1, y1, width, height = 0, 0, 0, 0
            
            # ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค๋ฅผ ์ด๋ฏธ์ง€ ์ขŒํ‘œ๋กœ ๋ณ€ํ™˜
            x1_px = int(x1 * image_width)
            y1_px = int(y1 * image_height)
            width_px = int(width * image_width)
            height_px = int(height * image_height)
            
            # ๊ฐ์ฒด ์ด๋ฏธ์ง€ ์ž๋ฅด๊ธฐ
            try:
                object_image = image.crop((x1_px, y1_px, x1_px + width_px, y1_px + height_px))
                
                # ์ž„๋ฒ ๋”ฉ ์ƒ์„ฑ
                embedding = generate_image_embedding(object_image)
                if embedding is None:
                    continue
                
                # ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ ๊ตฌ์„ฑ
                # bbox๋ฅผ JSON ๋ฌธ์ž์—ด๋กœ ์ง๋ ฌํ™”ํ•˜์—ฌ ChromaDB ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ ์ œํ•œ ์šฐํšŒ
                bbox_json = json.dumps({
                    "x": x1,
                    "y": y1,
                    "width": width,
                    "height": height
                })
                
                # ๊ฐ์ฒด ์ด๋ฏธ์ง€๋ฅผ base64๋กœ ์ธ์ฝ”๋”ฉ
                buffered = BytesIO()
                object_image.save(buffered, format="JPEG")
                img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
                
                metadata = {
                    "image_id": image_id,
                    "class": obj.get('class', ''),
                    "confidence": obj.get('confidence', 0),
                    "bbox": bbox_json,  # JSON ๋ฌธ์ž์—ด๋กœ ์ €์žฅ
                    "image_data": img_str  # ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ ์ถ”๊ฐ€
                }
                
                object_ids.append(object_id)
                object_embeddings.append(embedding)
                object_metadatas.append(metadata)
            except Exception as e:
                print(f"Error processing object: {e}")
                continue
        
        # ๊ฐ์ฒด๊ฐ€ ์—†๋Š” ๊ฒฝ์šฐ
        if not object_ids:
            return jsonify({"error": "No valid objects to add"})
        
        # ๋””๋ฒ„๊น…: ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ ์ถœ๋ ฅ
        print(f"[DEBUG] Adding {len(object_ids)} objects to vector DB")
        print(f"[DEBUG] First metadata sample: {object_metadatas[0] if object_metadatas else 'None'}")
        
        try:
            # ๊ฐ์ฒด๋“ค์„ DB์— ์ถ”๊ฐ€
            object_collection.add(
                ids=object_ids,
                embeddings=object_embeddings,
                metadatas=object_metadatas
            )
            print("[DEBUG] Successfully added objects to vector DB")
        except Exception as e:
            print(f"[DEBUG] Error adding to vector DB: {e}")
            raise e
        
        return jsonify({
            "success": True,
            "image_id": image_id,
            "object_count": len(object_ids),
            "object_ids": object_ids
        })
    
    except Exception as e:
        print(f"Error in add-detected-objects API: {e}")
        return jsonify({"error": str(e)}), 500

@app.route('/api/search-similar-objects', methods=['POST'])
@login_required
def search_similar_objects():
    """์œ ์‚ฌํ•œ ๊ฐ์ฒด ๊ฒ€์ƒ‰ API"""
    print("[DEBUG] Received request in search-similar-objects")
    
    if clip_model is None or object_collection is None:
        print("[DEBUG] Error: Image embedding model or vector DB not available")
        return jsonify({"error": "Image embedding model or vector DB not available"})

    try:
        # ์š”์ฒญ ๋ฐ์ดํ„ฐ ์ถ”์ถœ
        data = request.json
        print(f"[DEBUG] Request data keys: {list(data.keys()) if data else 'None'}")
        
        if not data:
            print("[DEBUG] Error: Missing request data")
            return jsonify({"error": "Missing request data"})
        
        # ๊ฒ€์ƒ‰ ์œ ํ˜• ๊ฒฐ์ •
        search_type = data.get('searchType', 'image')
        n_results = int(data.get('n_results', 5))  # ๊ฒฐ๊ณผ ๊ฐœ์ˆ˜
        print(f"[DEBUG] Search type: {search_type}, n_results: {n_results}")
        
        query_embedding = None
        
        if search_type == 'image' and 'image' in data:
            # ์ด๋ฏธ์ง€๋กœ ๊ฒ€์ƒ‰ํ•˜๋Š” ๊ฒฝ์šฐ
            print("[DEBUG] Searching by image")
            image_data = data['image']
            if image_data.startswith('data:image'):
                image_data = image_data.split(',')[1]
            
            try:
                image = Image.open(BytesIO(base64.b64decode(image_data))).convert('RGB')
                query_embedding = generate_image_embedding(image)
                print(f"[DEBUG] Generated image embedding: {type(query_embedding)}, shape: {len(query_embedding) if query_embedding is not None else 'None'}")
            except Exception as e:
                print(f"[DEBUG] Error generating image embedding: {e}")
                return jsonify({"error": f"Error processing image: {str(e)}"}), 500
        
        elif search_type == 'object' and 'objectId' in data:
            # ๊ฐ์ฒด ID๋กœ ๊ฒ€์ƒ‰ํ•˜๋Š” ๊ฒฝ์šฐ
            object_id = data['objectId']
            result = object_collection.get(ids=[object_id], include=["embeddings"])
            
            if result and "embeddings" in result and len(result["embeddings"]) > 0:
                query_embedding = result["embeddings"][0]
        
        elif search_type == 'class' and 'class_name' in data:
            # ํด๋ž˜์Šค ์ด๋ฆ„์œผ๋กœ ๊ฒ€์ƒ‰ํ•˜๋Š” ๊ฒฝ์šฐ
            print("[DEBUG] Searching by class name")
            class_name = data['class_name']
            print(f"[DEBUG] Class name: {class_name}")
            filter_query = {"class": {"$eq": class_name}}
            
            try:
                # ํด๋ž˜์Šค๋กœ ํ•„ํ„ฐ๋งํ•˜์—ฌ ๊ฒ€์ƒ‰
                print(f"[DEBUG] Querying with filter: {filter_query}")
                # Use get method instead of query for class-based filtering
                results = object_collection.get(
                    where=filter_query,
                    limit=n_results,
                    include=["metadatas", "embeddings", "documents"]
                )
                
                print(f"[DEBUG] Query results: {results['ids'][0] if 'ids' in results and len(results['ids']) > 0 else 'No results'}")
                formatted_results = format_object_results(results)
                print(f"[DEBUG] Formatted results count: {len(formatted_results)}")
                
                return jsonify({
                    "success": True,
                    "searchType": "class",
                    "results": formatted_results
                })
            except Exception as e:
                print(f"[DEBUG] Error in class search: {e}")
                return jsonify({"error": f"Error in class search: {str(e)}"}), 500
        
        else:
            print(f"[DEBUG] Invalid search parameters: {data}")
            return jsonify({"error": "Invalid search parameters"})
        
        if query_embedding is None:
            print("[DEBUG] Error: Failed to generate query embedding")
            return jsonify({"error": "Failed to generate query embedding"})
        
        try:
            # ์œ ์‚ฌ๋„ ๊ฒ€์ƒ‰ ์‹คํ–‰
            print(f"[DEBUG] Running similarity search with embedding of length {len(query_embedding)}")
            results = object_collection.query(
                query_embeddings=[query_embedding],
                n_results=n_results,
                include=["metadatas", "distances"]
            )
            
            print(f"[DEBUG] Query results: {results['ids'][0] if 'ids' in results and len(results['ids']) > 0 else 'No results'}")
            formatted_results = format_object_results(results)
            print(f"[DEBUG] Formatted results count: {len(formatted_results)}")
            
            return jsonify({
                "success": True,
                "searchType": search_type,
                "results": formatted_results
            })
        except Exception as e:
            print(f"[DEBUG] Error in similarity search: {e}")
            return jsonify({"error": f"Error in similarity search: {str(e)}"}), 500
    
    except Exception as e:
        print(f"Error in search-similar-objects API: {e}")
        return jsonify({"error": str(e)}), 500

def format_object_results(results):
    """๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ํฌ๋งทํŒ… - ChromaDB query ๋ฐ get ๋ฉ”์„œ๋“œ ๊ฒฐ๊ณผ ๋ชจ๋‘ ์ฒ˜๋ฆฌ"""
    formatted_results = []
    
    print(f"[DEBUG] Formatting results: {results.keys() if results else 'None'}")
    
    if not results:
        print("[DEBUG] No results to format")
        return formatted_results
    
    try:
        # Check if this is a result from 'get' method (class search) or 'query' method (similarity search)
        is_get_result = 'ids' in results and isinstance(results['ids'], list) and not isinstance(results['ids'][0], list) if 'ids' in results else False
        
        if is_get_result:
            # Handle results from 'get' method (flat structure)
            print("[DEBUG] Processing results from get method (class search)")
            if len(results['ids']) == 0:
                return formatted_results
                
            for i, obj_id in enumerate(results['ids']):
                try:
                    # Extract object info
                    metadata = results['metadatas'][i] if 'metadatas' in results else {}
                    
                    # Deserialize bbox if stored as JSON string
                    if 'bbox' in metadata and isinstance(metadata['bbox'], str):
                        try:
                            metadata['bbox'] = json.loads(metadata['bbox'])
                        except:
                            pass  # Keep as is if deserialization fails
                    
                    result_item = {
                        "id": obj_id,
                        "metadata": metadata
                    }
                    
                    # No distance in get results
                    
                    # Check if image data is already in metadata
                    if 'image_data' not in metadata:
                        print(f"[DEBUG] Image data not found in metadata for object {obj_id}")
                    else:
                        print(f"[DEBUG] Image data found in metadata for object {obj_id}")
                    
                    formatted_results.append(result_item)
                except Exception as e:
                    print(f"[DEBUG] Error formatting get result {i}: {e}")
        else:
            # Handle results from 'query' method (nested structure)
            print("[DEBUG] Processing results from query method (similarity search)")
            if 'ids' not in results or len(results['ids']) == 0 or len(results['ids'][0]) == 0:
                return formatted_results
                
            for i, obj_id in enumerate(results['ids'][0]):
                try:
                    # Extract object info
                    metadata = results['metadatas'][0][i] if 'metadatas' in results and len(results['metadatas']) > 0 else {}
                    
                    # Deserialize bbox if stored as JSON string
                    if 'bbox' in metadata and isinstance(metadata['bbox'], str):
                        try:
                            metadata['bbox'] = json.loads(metadata['bbox'])
                        except:
                            pass  # Keep as is if deserialization fails
                    
                    result_item = {
                        "id": obj_id,
                        "metadata": metadata
                    }
                    
                    if 'distances' in results and len(results['distances']) > 0:
                        result_item["distance"] = float(results['distances'][0][i])
                    
                    # Check if image data is already in metadata
                    if 'image_data' not in metadata:
                        try:
                            # Try to get original image via image ID
                            image_id = metadata.get('image_id')
                            if image_id:
                                print(f"[DEBUG] Image data not found in metadata for object {obj_id} with image_id {image_id}")
                        except Exception as e:
                            print(f"[DEBUG] Error checking image data for result {i}: {e}")
                    else:
                        print(f"[DEBUG] Image data found in metadata for object {obj_id}")
                    
                    formatted_results.append(result_item)
                except Exception as e:
                    print(f"[DEBUG] Error formatting query result {i}: {e}")
    except Exception as e:
        print(f"[DEBUG] Error in format_object_results: {e}")
    
    return formatted_results

# ๋กœ๊ทธ์ธ ํŽ˜์ด์ง€ HTML ํ…œํ”Œ๋ฆฟ
LOGIN_TEMPLATE = '''
<!DOCTYPE html>
<html lang="ko">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Vision LLM Agent - ๋กœ๊ทธ์ธ</title>
    <style>
        body {
            font-family: Arial, sans-serif;
            background-color: #f5f5f5;
            display: flex;
            justify-content: center;
            align-items: center;
            height: 100vh;
            margin: 0;
        }
        .login-container {
            background-color: white;
            padding: 2rem;
            border-radius: 8px;
            box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
            width: 100%;
            max-width: 400px;
        }
        h1 {
            text-align: center;
            color: #4a6cf7;
            margin-bottom: 1.5rem;
        }
        .form-group {
            margin-bottom: 1rem;
        }
        label {
            display: block;
            margin-bottom: 0.5rem;
            font-weight: bold;
        }
        input {
            width: 100%;
            padding: 0.75rem;
            border: 1px solid #ddd;
            border-radius: 4px;
            font-size: 1rem;
        }
        button {
            width: 100%;
            padding: 0.75rem;
            background-color: #4a6cf7;
            color: white;
            border: none;
            border-radius: 4px;
            font-size: 1rem;
            cursor: pointer;
            margin-top: 1rem;
        }
        button:hover {
            background-color: #3a5cd8;
        }
        .error-message {
            color: #e74c3c;
            margin-top: 1rem;
            text-align: center;
        }
    </style>
</head>
<body>
    <div class="login-container">
        <h1>Vision LLM Agent</h1>
        <form action="/login" method="post" autocomplete="off">
            <!-- hidden dummy fields to discourage Chrome autofill -->
            <input type="text" name="fakeusernameremembered" style="display:none" tabindex="-1" autocomplete="off">
            <input type="password" name="fakepasswordremembered" style="display:none" tabindex="-1" autocomplete="off">
            <div class="form-group">
                <label for="username">Username</label>
                <input type="text" id="username" name="username" value="user" required autocomplete="username" autocapitalize="none" autocorrect="off" spellcheck="false">
            </div>
            <div class="form-group">
                <label for="password">Password</label>
                <input type="password" id="password" name="password" value="user123" placeholder="******" required autocomplete="current-password" autocapitalize="none" autocorrect="off" spellcheck="false">
            </div>
            <button type="submit">Login</button>
            {% if error %}
            <p class="error-message">{{ error }}</p>
            {% endif %}
        </form>
    </div>
</body>
</html>
'''

@app.route('/login', methods=['GET', 'POST'])
def login():
    # ์ด๋ฏธ ๋กœ๊ทธ์ธ๋œ ์‚ฌ์šฉ์ž๋Š” ๋ฉ”์ธ ํŽ˜์ด์ง€๋กœ ๋ฆฌ๋””๋ ‰์…˜
    if current_user.is_authenticated and login_fresh():
        print(f"User already authenticated and fresh as: {current_user.username}, redirecting to index")
        return redirect('/index.html')
    elif current_user.is_authenticated and not login_fresh():
        # Remember-cookie ์ƒํƒœ ๋“ฑ ๋น„-ํ”„๋ ˆ์‹œ ์„ธ์…˜์ด๋ฉด ๋กœ๊ทธ์ธ ํŽ˜์ด์ง€๋ฅผ ๋ณด์—ฌ์„œ ์žฌ์ธ์ฆ ์œ ๋„
        print("User authenticated but session not fresh; showing login page for reauthentication")
    
    error = None
    if request.method == 'POST':
        username = request.form.get('username')
        password = request.form.get('password')
        
        print(f"Login attempt: username={username}")
        
        if username in users and users[username].password == password:
            # ๋กœ๊ทธ์ธ ์„ฑ๊ณต ์‹œ ์„ธ์…˜์— ์‚ฌ์šฉ์ž ์ •๋ณด ์ €์žฅ
            user = users[username]
            login_user(user, remember=False)  # 2๋ถ„ ์„ธ์…˜ ๋งŒ๋ฃŒ๋ฅผ ์œ„ํ•ด remember ๋น„ํ™œ์„ฑํ™”
            session['user_id'] = user.id
            session['username'] = username
            session.permanent = True
            session.modified = True  # ์„ธ์…˜ ๋ณ€๊ฒฝ ์‚ฌํ•ญ ์ฆ‰์‹œ ์ ์šฉ
            
            print(f"Login successful for user: {username}, ID: {user.id}")
            
            # ๋ฆฌ๋””๋ ‰์…˜ ์ฒ˜๋ฆฌ
            next_page = request.args.get('next')
            if next_page and next_page.startswith('/') and next_page != '/login':
                print(f"Redirecting to: {next_page}")
                return redirect(next_page)
            print("Redirecting to index.html")
            return redirect(url_for('serve_index_html'))
        else:
            error = 'Invalid username or password'
            print(f"Login failed: {error}")
    
    return render_template_string(LOGIN_TEMPLATE, error=error)

@app.route('/logout')
def logout():
    logout_user()
    # Clear server-side session fully
    try:
        session.clear()
    except Exception as e:
        print(f"[DEBUG] Error clearing session on logout: {e}")
    # Ensure remember cookie is removed by setting an expired cookie
    resp = redirect(url_for('login'))
    try:
        resp.delete_cookie(
            key='remember_token',
            path='/',
            samesite='None',
            secure=True,
            httponly=True,
        )
    except Exception as e:
        print(f"[DEBUG] Error deleting remember_token cookie: {e}")
    return resp

# ์ •์  ํŒŒ์ผ ์„œ๋น™์„ ์œ„ํ•œ ๋ผ์šฐํŠธ (๋กœ๊ทธ์ธ ๋ถˆํ•„์š”)
@app.route('/static/<path:filename>')
def serve_static(filename):
    print(f"Serving static file: {filename}")
    resp = send_from_directory(app.static_folder, filename)
    # Prevent caching of static assets to reflect latest frontend changes
    resp.headers['Cache-Control'] = 'no-store, no-cache, must-revalidate, max-age=0'
    resp.headers['Pragma'] = 'no-cache'
    resp.headers['Expires'] = '0'
    return resp

# ์ธ๋ฑ์Šค HTML ์ง์ ‘ ์„œ๋น™ (๋กœ๊ทธ์ธ ํ•„์š”)
@app.route('/index.html')
def serve_index_html():
    # ์„ธ์…˜ ๋ฐ ์ฟ ํ‚ค ๋””๋ฒ„๊ทธ ์ •๋ณด
    print(f"Request to /index.html - Session data: {dict(session)}")
    print(f"Request to /index.html - Cookies: {request.cookies}")
    print(f"Request to /index.html - User authenticated: {current_user.is_authenticated}")
    
    # ์ธ์ฆ ํ™•์ธ (fresh session only)
    if not current_user.is_authenticated or not login_fresh():
        print("User not authenticated, redirecting to login")
        return redirect(url_for('login'))
    
    print(f"Serving index.html for authenticated user: {current_user.username} (ID: {current_user.id})")
    # ์„ธ์…˜ ์ƒํƒœ ๋””๋ฒ„๊ทธ
    print(f"Session data: user_id={session.get('user_id')}, username={session.get('username')}, is_permanent={session.get('permanent', False)}")
    
    # ์„ธ์…˜ ๋งŒ๋ฃŒ๋ฅผ ์˜๋„๋Œ€๋กœ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ์—ฌ๊ธฐ์„œ ์„ธ์…˜์„ ๊ฐฑ์‹ ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
    # ์ฃผ์˜: ์„ธ์…˜์— ์“ฐ๊ธฐ(๋˜๋Š” session.modified=True)๋Š” Flask-Session์—์„œ ๋งŒ๋ฃŒ์‹œ๊ฐ„์„ ์—ฐ์žฅํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
    
    # index.html์„ ์ฝ์–ด ํ•˜ํŠธ๋น„ํŠธ ์Šคํฌ๋ฆฝํŠธ๋ฅผ ์ฃผ์ž…
    index_path = os.path.join(app.static_folder, 'index.html')
    try:
        with open(index_path, 'r', encoding='utf-8') as f:
            html = f.read()
    except Exception as e:
        print(f"[DEBUG] Failed to read index.html for injection: {e}")
        return send_from_directory(app.static_folder, 'index.html')

    heartbeat_script = """
    <script>
    (function(){
      // 1) ์„ธ์…˜ ์ƒํƒœ ์ฃผ๊ธฐ ์ฒดํฌ (๋งŒ๋ฃŒ์‹œ ๋กœ๊ทธ์ธ์œผ๋กœ)
      function checkSession(){
        fetch('/api/status', {credentials: 'include', redirect: 'manual'}).then(function(res){
          var redirected = res.redirected || (res.url && res.url.indexOf('/login') !== -1);
          if(res.status !== 200 || redirected){
            window.location.href = '/login';
          }
        }).catch(function(){
          // ๋„คํŠธ์›Œํฌ ์˜ค๋ฅ˜ ๋“ฑ๋„ ๋กœ๊ทธ์ธ์œผ๋กœ ์œ ๋„
          window.location.href = '/login';
        });
      }
      checkSession();
      setInterval(checkSession, 30000);

      // 2) ์‚ฌ์šฉ์ž ๋น„ํ™œ์„ฑ(๋ฌด๋™์ž‘) 2๋ถ„ ํ›„ ์ž๋™ ๋กœ๊ทธ์•„์›ƒ
      var idleMs = 120000; // 2๋ถ„
      var idleTimer;
      function triggerLogout(){
        // ์„œ๋ฒ„ ์„ธ์…˜ ์ •๋ฆฌ ํ›„ ๋กœ๊ทธ์ธ ํ™”๋ฉด์œผ๋กœ
        window.location.href = '/logout';
      }
      function resetIdle(){
        if (idleTimer) clearTimeout(idleTimer);
        idleTimer = setTimeout(triggerLogout, idleMs);
      }
      ['click','mousemove','keydown','scroll','touchstart','visibilitychange'].forEach(function(evt){
        window.addEventListener(evt, resetIdle, {passive:true});
      });
      resetIdle();
    })();
    </script>
    """

    try:
        if '</body>' in html:
            html = html.replace('</body>', heartbeat_script + '</body>')
        else:
            html = html + heartbeat_script
    except Exception as e:
        print(f"[DEBUG] Failed to inject heartbeat script: {e}")
        return send_from_directory(app.static_folder, 'index.html')

    resp = make_response(html)
    # Prevent sensitive pages from being cached
    resp.headers['Cache-Control'] = 'no-store, no-cache, must-revalidate, max-age=0'
    resp.headers['Pragma'] = 'no-cache'
    resp.headers['Expires'] = '0'
    return resp

# Static files should be accessible without login requirements
@app.route('/static/<path:filename>')
def static_files(filename):
    print(f"Serving static file: {filename}")
    # Two possible locations after CRA build copy:
    # 1) Top-level:    static/<filename>
    # 2) Nested build: static/static/<filename>
    top_level_path = os.path.join(app.static_folder, filename)
    nested_dir = os.path.join(app.static_folder, 'static')
    nested_path = os.path.join(nested_dir, filename)

    try:
        if os.path.exists(top_level_path):
            return send_from_directory(app.static_folder, filename)
        elif os.path.exists(nested_path):
            # Serve from nested build directory
            return send_from_directory(nested_dir, filename)
        else:
            # Fallback: try as-is (may help in some edge cases)
            return send_from_directory(app.static_folder, filename)
    except Exception as e:
        print(f"[DEBUG] Error serving static file '{filename}': {e}")
        # Final fallback to avoid leaking stack traces
        return ('Not Found', 404)

# Add explicit handlers for JS files that are failing
@app.route('/static/js/<path:filename>')
def static_js_files(filename):
    print(f"Serving JS file: {filename}")
    # Try top-level static/js and nested static/static/js
    top_js_dir = os.path.join(app.static_folder, 'js')
    nested_js_dir = os.path.join(app.static_folder, 'static', 'js')
    top_js_path = os.path.join(top_js_dir, filename)
    nested_js_path = os.path.join(nested_js_dir, filename)

    try:
        if os.path.exists(top_js_path):
            return send_from_directory(top_js_dir, filename)
        elif os.path.exists(nested_js_path):
            return send_from_directory(nested_js_dir, filename)
        else:
            # As a fallback, let the generic static handler try
            return static_files(os.path.join('js', filename))
    except Exception as e:
        print(f"[DEBUG] Error serving JS file '{filename}': {e}")
        return ('Not Found', 404)

# ๊ธฐ๋ณธ ๊ฒฝ๋กœ ๋ฐ ๊ธฐํƒ€ ๊ฒฝ๋กœ ์ฒ˜๋ฆฌ (๋กœ๊ทธ์ธ ํ•„์š”)
@app.route('/', defaults={'path': ''}, methods=['GET'])
@app.route('/<path:path>', methods=['GET'])
@fresh_login_required
def serve_react(path):
    """Serve React frontend"""
    print(f"Serving React frontend for path: {path}, user: {current_user.username if current_user.is_authenticated else 'not authenticated'}")
    # ์ •์  ํŒŒ์ผ ์ฒ˜๋ฆฌ๋Š” ์ด์ œ ๋ณ„๋„ ๋ผ์šฐํŠธ์—์„œ ์ฒ˜๋ฆฌ
    if path != "" and os.path.exists(os.path.join(app.static_folder, path)):
        resp = send_from_directory(app.static_folder, path)
        resp.headers['Cache-Control'] = 'no-store, no-cache, must-revalidate, max-age=0'
        resp.headers['Pragma'] = 'no-cache'
        resp.headers['Expires'] = '0'
        return resp
    else:
        # React ์•ฑ์˜ index.html ์„œ๋น™ (ํ•˜ํŠธ๋น„ํŠธ ์Šคํฌ๋ฆฝํŠธ ์ฃผ์ž…)
        index_path = os.path.join(app.static_folder, 'index.html')
        try:
            with open(index_path, 'r', encoding='utf-8') as f:
                html = f.read()
        except Exception as e:
            print(f"[DEBUG] Failed to read index.html for injection (serve_react): {e}")
            resp = send_from_directory(app.static_folder, 'index.html')
            resp.headers['Cache-Control'] = 'no-store, no-cache, must-revalidate, max-age=0'
            resp.headers['Pragma'] = 'no-cache'
            resp.headers['Expires'] = '0'
            return resp

        heartbeat_script = """
        <script>
        (function(){
          // 1) ์„ธ์…˜ ์ƒํƒœ ์ฃผ๊ธฐ ์ฒดํฌ (๋งŒ๋ฃŒ์‹œ ๋กœ๊ทธ์ธ์œผ๋กœ)
          function checkSession(){
            fetch('/api/status', {credentials: 'include', redirect: 'manual'}).then(function(res){
              var redirected = res.redirected || (res.url && res.url.indexOf('/login') !== -1);
              if(res.status !== 200 || redirected){
                window.location.href = '/login';
              }
            }).catch(function(){
              window.location.href = '/login';
            });
          }
          checkSession();
          setInterval(checkSession, 30000);

          // 2) ์‚ฌ์šฉ์ž ๋น„ํ™œ์„ฑ(๋ฌด๋™์ž‘) 2๋ถ„ ํ›„ ์ž๋™ ๋กœ๊ทธ์•„์›ƒ
          var idleMs = 120000; // 2๋ถ„
          var idleTimer;
          function triggerLogout(){
            window.location.href = '/logout';
          }
          function resetIdle(){
            if (idleTimer) clearTimeout(idleTimer);
            idleTimer = setTimeout(triggerLogout, idleMs);
          }
          ['click','mousemove','keydown','scroll','touchstart','visibilitychange'].forEach(function(evt){
            window.addEventListener(evt, resetIdle, {passive:true});
          });
          resetIdle();
        })();
        </script>
        """

        try:
            if '</body>' in html:
                html = html.replace('</body>', heartbeat_script + '</body>')
            else:
                html = html + heartbeat_script
        except Exception as e:
            print(f"[DEBUG] Failed to inject heartbeat script (serve_react): {e}")
            resp = send_from_directory(app.static_folder, 'index.html')
            resp.headers['Cache-Control'] = 'no-store, no-cache, must-revalidate, max-age=0'
            resp.headers['Pragma'] = 'no-cache'
            resp.headers['Expires'] = '0'
            return resp

        resp = make_response(html)
        resp.headers['Cache-Control'] = 'no-store, no-cache, must-revalidate, max-age=0'
        resp.headers['Pragma'] = 'no-cache'
        resp.headers['Expires'] = '0'
        return resp

@app.route('/similar-images', methods=['GET'])
@fresh_login_required
def similar_images_page():
    """Serve similar images search page"""
    resp = send_from_directory(app.static_folder, 'similar-images.html')
    resp.headers['Cache-Control'] = 'no-store, no-cache, must-revalidate, max-age=0'
    resp.headers['Pragma'] = 'no-cache'
    resp.headers['Expires'] = '0'
    return resp

@app.route('/object-detection-search', methods=['GET'])
@fresh_login_required
def object_detection_search_page():
    """Serve object detection search page"""
    resp = send_from_directory(app.static_folder, 'object-detection-search.html')
    resp.headers['Cache-Control'] = 'no-store, no-cache, must-revalidate, max-age=0'
    resp.headers['Pragma'] = 'no-cache'
    resp.headers['Expires'] = '0'
    return resp

@app.route('/model-vector-db', methods=['GET'])
@fresh_login_required
def model_vector_db_page():
    """Serve model vector DB UI page"""
    resp = send_from_directory(app.static_folder, 'model-vector-db.html')
    resp.headers['Cache-Control'] = 'no-store, no-cache, must-revalidate, max-age=0'
    resp.headers['Pragma'] = 'no-cache'
    resp.headers['Expires'] = '0'
    return resp

@app.route('/openai-chat', methods=['GET'])
@fresh_login_required
def openai_chat_page():
    """Serve OpenAI chat UI page"""
    resp = send_from_directory(app.static_folder, 'openai-chat.html')
    resp.headers['Cache-Control'] = 'no-store, no-cache, must-revalidate, max-age=0'
    resp.headers['Pragma'] = 'no-cache'
    resp.headers['Expires'] = '0'
    return resp

@app.route('/api/openai/chat', methods=['POST'])
@fresh_login_required
def openai_chat_api():
    """Forward chat request to OpenAI Chat Completions API.
    Expects JSON: { prompt: string, model?: string, api_key?: string, system?: string }
    Uses OPENAI_API_KEY from environment if api_key not provided.
    """
    try:
        data = request.get_json(force=True)
    except Exception:
        return jsonify({"error": "Invalid JSON body"}), 400

    prompt = (data or {}).get('prompt', '').strip()
    model = (data or {}).get('model') or os.environ.get('OPENAI_MODEL', 'gpt-4')
    system = (data or {}).get('system') or 'You are a helpful assistant.'
    api_key = (data or {}).get('api_key') or os.environ.get('OPENAI_API_KEY')

    if not prompt:
        return jsonify({"error": "Missing 'prompt'"}), 400
    if not api_key:
        return jsonify({"error": "Missing OpenAI API key. Provide in request or set OPENAI_API_KEY env."}), 400

    # Prefer official Python SDK if available
    if OpenAI is None:
        return jsonify({"error": "OpenAI Python package not installed on server"}), 500

    try:
        start = time.time()
        client = OpenAI(api_key=api_key)

        # Perform chat completion
        chat = client.chat.completions.create(
            model=model,
            messages=[
                {"role": "system", "content": system},
                {"role": "user", "content": prompt},
            ],
        )
        latency = round(time.time() - start, 3)
    except Exception as e:
        # Log detailed error for diagnostics
        try:
            import traceback
            traceback.print_exc()
        except Exception:
            pass
        err_msg = str(e)
        print(f"[OpenAI Chat Error] model={model} err={err_msg}")
        return jsonify({
            "error": "OpenAI SDK call failed",
            "detail": err_msg,
            "model": model
        }), 502

    try:
        content = chat.choices[0].message.content if chat and chat.choices else ''
        usage = getattr(chat, 'usage', None)
        usage = usage.model_dump() if hasattr(usage, 'model_dump') else (usage or {})
    except Exception as e:
        return jsonify({"error": f"Failed to parse SDK response: {str(e)}"}), 500

    return jsonify({
        'response': content,
        'model': model,
        'usage': usage,
        'latency_sec': latency
    })

@app.route('/api/vision-rag/query', methods=['POST'])
@login_required
def vision_rag_query():
    """Vision RAG endpoint.
    Expects JSON with one of the following query modes and a user question:
      - { userQuery, searchType: 'image', image, n_results? }
      - { userQuery, searchType: 'object', objectId, n_results? }
      - { userQuery, searchType: 'class', class_name, n_results? }
    Returns: { answer, retrieved: [...], model, latency_sec }
    """
    if ChatOpenAI is None:
        return jsonify({"error": "LangChain not installed on server"}), 500

    data = request.get_json(silent=True) or {}
    # Debug: log incoming payload keys and basic info (without sensitive data)
    try:
        print("[VRAG][REQ] keys=", list(data.keys()))
        print("[VRAG][REQ] has_api_key=", bool(data.get('api_key') or os.environ.get('OPENAI_API_KEY')))
        _img = data.get('image')
        if isinstance(_img, str):
            print("[VRAG][REQ] image_str_len=", len(_img), "prefix=", _img[:30] if len(_img) > 30 else _img)
        print("[VRAG][REQ] searchType=", data.get('searchType'), "objectId=", data.get('objectId'), "class_name=", data.get('class_name'))
    except Exception as _e:
        print("[VRAG][WARN] failed to log request payload:", _e)

    user_query = (data.get('userQuery') or '').strip()
    if not user_query:
        return jsonify({"error": "Missing 'userQuery'"}), 400

    api_key = data.get('api_key') or os.environ.get('OPENAI_API_KEY')
    if not api_key:
        return jsonify({"error": "Missing OpenAI API key. Provide in request or set OPENAI_API_KEY env."}), 400

    search_type = data.get('searchType', 'image')
    n_results = int(data.get('n_results', 5))
    print(f"[VRAG] user_query='{user_query}' | search_type={search_type} | n_results={n_results}")

    # Build query embedding or filtered fetch similar to /api/search-similar-objects
    results = None
    try:
        if search_type == 'image' and 'image' in data:
            image_data = data['image']
            if isinstance(image_data, str) and image_data.startswith('data:image'):
                image_data = image_data.split(',')[1]
            image = Image.open(BytesIO(base64.b64decode(image_data))).convert('RGB')
            query_embedding = generate_image_embedding(image)
            if query_embedding is None:
                return jsonify({"error": "Failed to generate image embedding"}), 500
            results = object_collection.query(
                query_embeddings=[query_embedding],
                n_results=n_results,
                include=["metadatas", "distances"]
            ) if object_collection is not None else None
        elif search_type == 'object' and 'objectId' in data:
            obj_id = data['objectId']
            base = object_collection.get(ids=[obj_id], include=["embeddings"]) if object_collection is not None else None
            emb = base["embeddings"][0] if base and "embeddings" in base and base["embeddings"] else None
            if emb is None:
                return jsonify({"error": "objectId not found or has no embedding"}), 400
            results = object_collection.query(
                query_embeddings=[emb],
                n_results=n_results,
                include=["metadatas", "distances"]
            )
        elif search_type == 'class' and 'class_name' in data:
            filter_query = {"class": {"$eq": data['class_name']}}
            results = object_collection.get(
                where=filter_query,
                limit=n_results,
                include=["metadatas", "embeddings", "documents"]
            ) if object_collection is not None else None
        else:
            return jsonify({"error": "Invalid search parameters"}), 400
    except Exception as e:
        return jsonify({"error": f"Retrieval failed: {str(e)}"}), 500

    # Format results using existing helper
    formatted = format_object_results(results) if results else []
    # Debug: log retrieval summary
    try:
        cnt = len(formatted)
        print(f"[VRAG][RETRIEVE] items={cnt}")
        if cnt:
            print("[VRAG][RETRIEVE] first_item=", {
                'id': formatted[0].get('id'),
                'distance': formatted[0].get('distance'),
                'meta_keys': list((formatted[0].get('metadata') or {}).keys())
            })
    except Exception as _e:
        print("[VRAG][WARN] failed to log retrieval summary:", _e)

    # Build concise context for LLM
    def _shorten(md):
        try:
            bbox = md.get('bbox') if isinstance(md, dict) else None
            if isinstance(bbox, dict):
                bbox = {k: round(float(v), 3) for k, v in bbox.items() if isinstance(v, (int, float))}
            return {
                'image_id': md.get('image_id'),
                'class': md.get('class'),
                'confidence': md.get('confidence'),
                'bbox': bbox,
            }
        except Exception:
            return {k: md.get(k) for k in ('image_id', 'class', 'confidence') if k in md}

    context_items = []
    for r in formatted[:n_results]:
        md = r.get('metadata', {})
        item = {
            'id': r.get('id'),
            'distance': r.get('distance'),
            'meta': _shorten(md)
        }
        context_items.append(item)

    # Compose prompt
    system_text = (
        "You are a vision assistant. Use ONLY the provided detected object context to answer. "
        "Be concise and state uncertainty if context is insufficient."
    )
    # Provide the minimal JSON-like context to the model
    context_text = json.dumps(context_items, ensure_ascii=False, indent=2)
    user_text = f"User question: {user_query}\n\nDetected context (top {len(context_items)}):\n{context_text}"

    # Debug: show compact context preview
    try:
        print("[VRAG][CTX] context_items_count=", len(context_items))
        if context_items:
            print("[VRAG][CTX] sample=", json.dumps(context_items[0], ensure_ascii=False))
    except Exception as _e:
        print("[VRAG][WARN] failed to log context:", _e)

    # Attempt multimodal call (text + top-1 image) if available; otherwise fallback to text-only LangChain.
    answer = None
    model_used = None
    try:
        start = time.time()
        top_data_url = None
        try:
            if formatted:
                md0 = (formatted[0] or {}).get('metadata') or {}
                img_b64 = md0.get('image_data')
                if isinstance(img_b64, str) and len(img_b64) > 50:
                    # Construct data URL without logging raw base64
                    top_data_url = 'data:image/jpeg;base64,' + img_b64
        except Exception:
            top_data_url = None

        # Prefer OpenAI SDK for multimodal if available and we have an image
        if OpenAI is not None and top_data_url is not None:
            client = OpenAI(api_key=api_key)
            model_used = os.environ.get('OPENAI_MODEL', 'gpt-4o')
            chat = client.chat.completions.create(
                model=model_used,
                messages=[
                    {"role": "system", "content": system_text},
                    {
                        "role": "user",
                        "content": [
                            {"type": "text", "text": user_text},
                            {"type": "image_url", "image_url": {"url": top_data_url}},
                        ],
                    },
                ],
            )
            answer = chat.choices[0].message.content if chat and chat.choices else ''
        else:
            # Fallback to existing LangChain text-only flow
            llm = ChatOpenAI(api_key=api_key, model=os.environ.get('OPENAI_MODEL', 'gpt-4o'))
            prompt = ChatPromptTemplate.from_messages([
                ("system", system_text),
                ("human", "{input}")
            ])
            chain = prompt | llm | StrOutputParser()
            answer = chain.invoke({"input": user_text})
            model_used = getattr(llm, 'model', None)

        latency = round(time.time() - start, 3)
    except Exception as e:
        return jsonify({"error": f"LLM call failed: {str(e)}"}), 502

    return jsonify({
        "answer": answer,
        "retrieved": context_items,
        "model": model_used,
        "latency_sec": latency
    })

@app.route('/api/status', methods=['GET'])
@fresh_login_required
def status():
    return jsonify({
        "status": "online",
        "models": {
            "yolo": yolo_model is not None,
            "detr": detr_model is not None and detr_processor is not None,
            "vit": vit_model is not None and vit_processor is not None
        },
        "device": "GPU" if torch.cuda.is_available() else "CPU",
        "user": current_user.username
    })

# Root route is now handled by serve_react function
# This route is removed to prevent conflicts

@app.route('/index')
@login_required
def index_page():
    # /index ๊ฒฝ๋กœ๋Š” index.html๋กœ ๋ฆฌ๋””๋ ‰์…˜
    print("Index route redirecting to index.html")
    return redirect('/index.html')


if __name__ == "__main__":
    # ํ—ˆ๊น…ํŽ˜์ด์Šค Space์—์„œ๋Š” PORT ํ™˜๊ฒฝ ๋ณ€์ˆ˜๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค
    port = int(os.environ.get("PORT", 7860))
    app.run(debug=False, host='0.0.0.0', port=port)