Spaces:
Running
Running
from flask import Flask, request, jsonify, send_from_directory | |
import torch | |
from PIL import Image | |
import numpy as np | |
import os | |
import io | |
import base64 | |
import matplotlib.pyplot as plt | |
from matplotlib.patches import Rectangle | |
import time | |
from flask_cors import CORS | |
import json | |
app = Flask(__name__, static_folder='static') | |
CORS(app) # Enable CORS for all routes | |
# Model initialization | |
print("Loading models... This may take a moment.") | |
# YOLOv8 model | |
yolo_model = None | |
try: | |
import os | |
from ultralytics import YOLO | |
# ๋ชจ๋ธ ํ์ผ ๊ฒฝ๋ก | |
model_path = "yolov8n.pt" | |
# ๋ชจ๋ธ ํ์ผ์ด ์์ผ๋ฉด ์ง์ ๋ค์ด๋ก๋ | |
if not os.path.exists(model_path): | |
print("Downloading YOLOv8 model...") | |
os.system("wget -q https://ultralytics.com/assets/yolov8n.pt -O yolov8n.pt") | |
print("YOLOv8 model downloaded successfully") | |
yolo_model = YOLO(model_path) # Using the nano model for faster inference | |
print("YOLOv8 model loaded successfully") | |
except Exception as e: | |
print("Error loading YOLOv8 model:", e) | |
yolo_model = None | |
# DETR model (DEtection TRansformer) | |
detr_processor = None | |
detr_model = None | |
try: | |
from transformers import DetrImageProcessor, DetrForObjectDetection | |
detr_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") | |
detr_model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") | |
print("DETR model loaded successfully") | |
except Exception as e: | |
print("Error loading DETR model:", e) | |
detr_processor = None | |
detr_model = None | |
# ViT model | |
vit_processor = None | |
vit_model = None | |
try: | |
from transformers import ViTImageProcessor, ViTForImageClassification | |
vit_processor = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224") | |
vit_model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224") | |
print("ViT model loaded successfully") | |
except Exception as e: | |
print("Error loading ViT model:", e) | |
vit_processor = None | |
vit_model = None | |
# Get device information | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(f"Using device: {device}") | |
# LLM model (using an open-access model instead of Llama 4 which requires authentication) | |
llm_model = None | |
llm_tokenizer = None | |
try: | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
print("Loading LLM model... This may take a moment.") | |
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" # Using TinyLlama as an open-access alternative | |
llm_tokenizer = AutoTokenizer.from_pretrained(model_name) | |
llm_model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.float16, | |
# Removing options that require accelerate package | |
# device_map="auto", | |
# load_in_8bit=True | |
).to(device) | |
print("LLM model loaded successfully") | |
except Exception as e: | |
print(f"Error loading LLM model: {e}") | |
llm_model = None | |
llm_tokenizer = None | |
def process_llm_query(vision_results, user_query): | |
"""Process a query with the LLM model using vision results and user text""" | |
if llm_model is None or llm_tokenizer is None: | |
return {"error": "LLM model not available"} | |
# Create a prompt combining vision results and user query | |
prompt = f"""You are an AI assistant analyzing image detection results. | |
Here are the objects detected in the image: {json.dumps(vision_results, indent=2)} | |
User question: {user_query} | |
Please provide a detailed analysis based on the detected objects and the user's question. | |
""" | |
# Tokenize and generate response | |
try: | |
start_time = time.time() | |
inputs = llm_tokenizer(prompt, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
output = llm_model.generate( | |
**inputs, | |
max_new_tokens=512, | |
temperature=0.7, | |
top_p=0.9, | |
do_sample=True | |
) | |
response_text = llm_tokenizer.decode(output[0], skip_special_tokens=True) | |
# Remove the prompt from the response | |
if response_text.startswith(prompt): | |
response_text = response_text[len(prompt):].strip() | |
inference_time = time.time() - start_time | |
return { | |
"response": response_text, | |
"performance": { | |
"inference_time": round(inference_time, 3), | |
"device": "GPU" if torch.cuda.is_available() else "CPU" | |
} | |
} | |
except Exception as e: | |
return {"error": f"Error processing LLM query: {str(e)}"} | |
def image_to_base64(img): | |
"""Convert PIL Image to base64 string""" | |
buffered = io.BytesIO() | |
img.save(buffered, format="PNG") | |
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8') | |
return img_str | |
def process_yolo(image): | |
if yolo_model is None: | |
return {"error": "YOLOv8 model not loaded"} | |
# Measure inference time | |
start_time = time.time() | |
# Convert to numpy if it's a PIL image | |
if isinstance(image, Image.Image): | |
image_np = np.array(image) | |
else: | |
image_np = image | |
# Run inference | |
results = yolo_model(image_np) | |
# Process results | |
result_image = results[0].plot() | |
result_image = Image.fromarray(result_image) | |
# Get detection information | |
boxes = results[0].boxes | |
class_names = results[0].names | |
# Format detection results | |
detections = [] | |
for box in boxes: | |
class_id = int(box.cls[0].item()) | |
class_name = class_names[class_id] | |
confidence = round(box.conf[0].item(), 2) | |
bbox = box.xyxy[0].tolist() | |
bbox = [round(x) for x in bbox] | |
detections.append({ | |
"class": class_name, | |
"confidence": confidence, | |
"bbox": bbox | |
}) | |
# Calculate inference time | |
inference_time = time.time() - start_time | |
# Add inference time and device info | |
device_info = "GPU" if torch.cuda.is_available() else "CPU" | |
return { | |
"image": image_to_base64(result_image), | |
"detections": detections, | |
"performance": { | |
"inference_time": round(inference_time, 3), | |
"device": device_info | |
} | |
} | |
def process_detr(image): | |
if detr_model is None or detr_processor is None: | |
return {"error": "DETR model not loaded"} | |
# Measure inference time | |
start_time = time.time() | |
# Prepare image for the model | |
inputs = detr_processor(images=image, return_tensors="pt") | |
# Run inference | |
with torch.no_grad(): | |
outputs = detr_model(**inputs) | |
# Process results | |
target_sizes = torch.tensor([image.size[::-1]]) | |
results = detr_processor.post_process_object_detection( | |
outputs, target_sizes=target_sizes, threshold=0.9 | |
)[0] | |
# Create a copy of the image to draw on | |
result_image = image.copy() | |
fig, ax = plt.subplots(1) | |
ax.imshow(result_image) | |
# Format detection results | |
detections = [] | |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
box = [round(i) for i in box.tolist()] | |
class_name = detr_model.config.id2label[label.item()] | |
confidence = round(score.item(), 2) | |
# Draw rectangle | |
rect = Rectangle((box[0], box[1]), box[2] - box[0], box[3] - box[1], | |
linewidth=2, edgecolor='r', facecolor='none') | |
ax.add_patch(rect) | |
# Add label | |
plt.text(box[0], box[1], "{}: {}".format(class_name, confidence), | |
bbox=dict(facecolor='white', alpha=0.8)) | |
detections.append({ | |
"class": class_name, | |
"confidence": confidence, | |
"bbox": box | |
}) | |
# Save figure to image | |
buf = io.BytesIO() | |
plt.tight_layout() | |
plt.axis('off') | |
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0) | |
buf.seek(0) | |
result_image = Image.open(buf) | |
plt.close(fig) | |
# Calculate inference time | |
inference_time = time.time() - start_time | |
# Add inference time and device info | |
device_info = "GPU" if torch.cuda.is_available() else "CPU" | |
return { | |
"image": image_to_base64(result_image), | |
"detections": detections, | |
"performance": { | |
"inference_time": round(inference_time, 3), | |
"device": device_info | |
} | |
} | |
def process_vit(image): | |
if vit_model is None or vit_processor is None: | |
return {"error": "ViT model not loaded"} | |
# Measure inference time | |
start_time = time.time() | |
# Prepare image for the model | |
inputs = vit_processor(images=image, return_tensors="pt") | |
# Run inference | |
with torch.no_grad(): | |
outputs = vit_model(**inputs) | |
logits = outputs.logits | |
# Get the predicted class | |
predicted_class_idx = logits.argmax(-1).item() | |
prediction = vit_model.config.id2label[predicted_class_idx] | |
# Get top 5 predictions | |
probs = torch.nn.functional.softmax(logits, dim=-1)[0] | |
top5_prob, top5_indices = torch.topk(probs, 5) | |
results = [] | |
for i, (prob, idx) in enumerate(zip(top5_prob, top5_indices)): | |
class_name = vit_model.config.id2label[idx.item()] | |
results.append({ | |
"rank": i+1, | |
"class": class_name, | |
"probability": round(prob.item(), 3) | |
}) | |
# Calculate inference time | |
inference_time = time.time() - start_time | |
# Add inference time and device info | |
device_info = "GPU" if torch.cuda.is_available() else "CPU" | |
return { | |
"top_predictions": results, | |
"performance": { | |
"inference_time": round(inference_time, 3), | |
"device": device_info | |
} | |
} | |
def yolo_detect(): | |
if 'image' not in request.files: | |
return jsonify({"error": "No image provided"}), 400 | |
file = request.files['image'] | |
image = Image.open(file.stream) | |
result = process_yolo(image) | |
return jsonify(result) | |
def detr_detect(): | |
if 'image' not in request.files: | |
return jsonify({"error": "No image provided"}), 400 | |
file = request.files['image'] | |
image = Image.open(file.stream) | |
result = process_detr(image) | |
return jsonify(result) | |
def vit_classify(): | |
if 'image' not in request.files: | |
return jsonify({"error": "No image provided"}), 400 | |
file = request.files['image'] | |
image = Image.open(file.stream) | |
result = process_vit(image) | |
return jsonify(result) | |
def analyze_with_llm(): | |
# Check if required data is in the request | |
if not request.json: | |
return jsonify({"error": "No JSON data provided"}), 400 | |
# Extract vision results and user query from request | |
data = request.json | |
if 'visionResults' not in data or 'userQuery' not in data: | |
return jsonify({"error": "Missing required fields: visionResults or userQuery"}), 400 | |
vision_results = data['visionResults'] | |
user_query = data['userQuery'] | |
# Process the query with LLM | |
result = process_llm_query(vision_results, user_query) | |
return jsonify(result) | |
def status(): | |
return jsonify({ | |
"status": "online", | |
"models": { | |
"yolo": yolo_model is not None, | |
"detr": detr_model is not None and detr_processor is not None, | |
"vit": vit_model is not None and vit_processor is not None | |
}, | |
"device": "GPU" if torch.cuda.is_available() else "CPU" | |
}) | |
def index(): | |
return send_from_directory('static', 'index.html') | |
if __name__ == "__main__": | |
# ํ๊น ํ์ด์ค Space์์๋ PORT ํ๊ฒฝ ๋ณ์๋ฅผ ์ฌ์ฉํฉ๋๋ค | |
port = int(os.environ.get("PORT", 7860)) | |
app.run(debug=False, host='0.0.0.0', port=port) | |