from flask import Flask, request, jsonify, send_from_directory import torch from PIL import Image import numpy as np import os import io import base64 import matplotlib.pyplot as plt from matplotlib.patches import Rectangle import time from flask_cors import CORS import json app = Flask(__name__, static_folder='static') CORS(app) # Enable CORS for all routes # Model initialization print("Loading models... This may take a moment.") # YOLOv8 model yolo_model = None try: import os from ultralytics import YOLO # 모델 파일 경로 model_path = "yolov8n.pt" # 모델 파일이 없으면 직접 다운로드 if not os.path.exists(model_path): print("Downloading YOLOv8 model...") os.system("wget -q https://ultralytics.com/assets/yolov8n.pt -O yolov8n.pt") print("YOLOv8 model downloaded successfully") yolo_model = YOLO(model_path) # Using the nano model for faster inference print("YOLOv8 model loaded successfully") except Exception as e: print("Error loading YOLOv8 model:", e) yolo_model = None # DETR model (DEtection TRansformer) detr_processor = None detr_model = None try: from transformers import DetrImageProcessor, DetrForObjectDetection detr_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") detr_model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") print("DETR model loaded successfully") except Exception as e: print("Error loading DETR model:", e) detr_processor = None detr_model = None # ViT model vit_processor = None vit_model = None try: from transformers import ViTImageProcessor, ViTForImageClassification vit_processor = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224") vit_model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224") print("ViT model loaded successfully") except Exception as e: print("Error loading ViT model:", e) vit_processor = None vit_model = None # Get device information device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") # LLM model (using an open-access model instead of Llama 4 which requires authentication) llm_model = None llm_tokenizer = None try: from transformers import AutoModelForCausalLM, AutoTokenizer print("Loading LLM model... This may take a moment.") model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" # Using TinyLlama as an open-access alternative llm_tokenizer = AutoTokenizer.from_pretrained(model_name) llm_model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, # Removing options that require accelerate package # device_map="auto", # load_in_8bit=True ).to(device) print("LLM model loaded successfully") except Exception as e: print(f"Error loading LLM model: {e}") llm_model = None llm_tokenizer = None def process_llm_query(vision_results, user_query): """Process a query with the LLM model using vision results and user text""" if llm_model is None or llm_tokenizer is None: return {"error": "LLM model not available"} # Create a prompt combining vision results and user query prompt = f"""You are an AI assistant analyzing image detection results. Here are the objects detected in the image: {json.dumps(vision_results, indent=2)} User question: {user_query} Please provide a detailed analysis based on the detected objects and the user's question. """ # Tokenize and generate response try: start_time = time.time() inputs = llm_tokenizer(prompt, return_tensors="pt").to(device) with torch.no_grad(): output = llm_model.generate( **inputs, max_new_tokens=512, temperature=0.7, top_p=0.9, do_sample=True ) response_text = llm_tokenizer.decode(output[0], skip_special_tokens=True) # Remove the prompt from the response if response_text.startswith(prompt): response_text = response_text[len(prompt):].strip() inference_time = time.time() - start_time return { "response": response_text, "performance": { "inference_time": round(inference_time, 3), "device": "GPU" if torch.cuda.is_available() else "CPU" } } except Exception as e: return {"error": f"Error processing LLM query: {str(e)}"} def image_to_base64(img): """Convert PIL Image to base64 string""" buffered = io.BytesIO() img.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode('utf-8') return img_str def process_yolo(image): if yolo_model is None: return {"error": "YOLOv8 model not loaded"} # Measure inference time start_time = time.time() # Convert to numpy if it's a PIL image if isinstance(image, Image.Image): image_np = np.array(image) else: image_np = image # Run inference results = yolo_model(image_np) # Process results result_image = results[0].plot() result_image = Image.fromarray(result_image) # Get detection information boxes = results[0].boxes class_names = results[0].names # Format detection results detections = [] for box in boxes: class_id = int(box.cls[0].item()) class_name = class_names[class_id] confidence = round(box.conf[0].item(), 2) bbox = box.xyxy[0].tolist() bbox = [round(x) for x in bbox] detections.append({ "class": class_name, "confidence": confidence, "bbox": bbox }) # Calculate inference time inference_time = time.time() - start_time # Add inference time and device info device_info = "GPU" if torch.cuda.is_available() else "CPU" return { "image": image_to_base64(result_image), "detections": detections, "performance": { "inference_time": round(inference_time, 3), "device": device_info } } def process_detr(image): if detr_model is None or detr_processor is None: return {"error": "DETR model not loaded"} # Measure inference time start_time = time.time() # Prepare image for the model inputs = detr_processor(images=image, return_tensors="pt") # Run inference with torch.no_grad(): outputs = detr_model(**inputs) # Process results target_sizes = torch.tensor([image.size[::-1]]) results = detr_processor.post_process_object_detection( outputs, target_sizes=target_sizes, threshold=0.9 )[0] # Create a copy of the image to draw on result_image = image.copy() fig, ax = plt.subplots(1) ax.imshow(result_image) # Format detection results detections = [] for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): box = [round(i) for i in box.tolist()] class_name = detr_model.config.id2label[label.item()] confidence = round(score.item(), 2) # Draw rectangle rect = Rectangle((box[0], box[1]), box[2] - box[0], box[3] - box[1], linewidth=2, edgecolor='r', facecolor='none') ax.add_patch(rect) # Add label plt.text(box[0], box[1], "{}: {}".format(class_name, confidence), bbox=dict(facecolor='white', alpha=0.8)) detections.append({ "class": class_name, "confidence": confidence, "bbox": box }) # Save figure to image buf = io.BytesIO() plt.tight_layout() plt.axis('off') plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0) buf.seek(0) result_image = Image.open(buf) plt.close(fig) # Calculate inference time inference_time = time.time() - start_time # Add inference time and device info device_info = "GPU" if torch.cuda.is_available() else "CPU" return { "image": image_to_base64(result_image), "detections": detections, "performance": { "inference_time": round(inference_time, 3), "device": device_info } } def process_vit(image): if vit_model is None or vit_processor is None: return {"error": "ViT model not loaded"} # Measure inference time start_time = time.time() # Prepare image for the model inputs = vit_processor(images=image, return_tensors="pt") # Run inference with torch.no_grad(): outputs = vit_model(**inputs) logits = outputs.logits # Get the predicted class predicted_class_idx = logits.argmax(-1).item() prediction = vit_model.config.id2label[predicted_class_idx] # Get top 5 predictions probs = torch.nn.functional.softmax(logits, dim=-1)[0] top5_prob, top5_indices = torch.topk(probs, 5) results = [] for i, (prob, idx) in enumerate(zip(top5_prob, top5_indices)): class_name = vit_model.config.id2label[idx.item()] results.append({ "rank": i+1, "class": class_name, "probability": round(prob.item(), 3) }) # Calculate inference time inference_time = time.time() - start_time # Add inference time and device info device_info = "GPU" if torch.cuda.is_available() else "CPU" return { "top_predictions": results, "performance": { "inference_time": round(inference_time, 3), "device": device_info } } @app.route('/api/detect/yolo', methods=['POST']) def yolo_detect(): if 'image' not in request.files: return jsonify({"error": "No image provided"}), 400 file = request.files['image'] image = Image.open(file.stream) result = process_yolo(image) return jsonify(result) @app.route('/api/detect/detr', methods=['POST']) def detr_detect(): if 'image' not in request.files: return jsonify({"error": "No image provided"}), 400 file = request.files['image'] image = Image.open(file.stream) result = process_detr(image) return jsonify(result) @app.route('/api/classify/vit', methods=['POST']) def vit_classify(): if 'image' not in request.files: return jsonify({"error": "No image provided"}), 400 file = request.files['image'] image = Image.open(file.stream) result = process_vit(image) return jsonify(result) @app.route('/api/analyze', methods=['POST']) def analyze_with_llm(): # Check if required data is in the request if not request.json: return jsonify({"error": "No JSON data provided"}), 400 # Extract vision results and user query from request data = request.json if 'visionResults' not in data or 'userQuery' not in data: return jsonify({"error": "Missing required fields: visionResults or userQuery"}), 400 vision_results = data['visionResults'] user_query = data['userQuery'] # Process the query with LLM result = process_llm_query(vision_results, user_query) return jsonify(result) @app.route('/api/status', methods=['GET']) def status(): return jsonify({ "status": "online", "models": { "yolo": yolo_model is not None, "detr": detr_model is not None and detr_processor is not None, "vit": vit_model is not None and vit_processor is not None }, "device": "GPU" if torch.cuda.is_available() else "CPU" }) @app.route('/') def index(): return send_from_directory('static', 'index.html') if __name__ == "__main__": # 허깅페이스 Space에서는 PORT 환경 변수를 사용합니다 port = int(os.environ.get("PORT", 7860)) app.run(debug=False, host='0.0.0.0', port=port)